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ABSTRACT 
Inserting a pressuremeter or dilatometer into sand inevitably alters the initial stress state, obscuring the early part of the 
test with a disturbance contribution. In extreme cases where a device has been pushed into the ground, the only part of 
the subsequent cavity expansion capable of straightforward analysis will be data obtained following a stress reversal. This 
approach is already used to derive high quality modulus measurements from unload/reload cycles (Hughes, 1982). The 
same argument applies to the final cavity unloading. In addition to stiffness, it is possible to derive sensible strength 
parameters as the unloading continues beyond the elastic range and material yields in the reverse sense. Closed form 
solutions that assume the form of the stress/strain response for the undrained contraction case have been widely used for 
some time, but for drained contraction, these give ambiguous results. This paper uses a finite difference approach based 
on Manassero (1989) to examine contraction data with minimal assumptions and no restrictions on the form of the 
stress/strain curve. Results from the unloading of self-bored, pre-bored and pushed pressuremeter tests in various dilatant 
materials are presented in the form of stress/strain curves with peak shear stress and friction angle identified. It is apparent 
that the shear strain is different for these two events, the peak shear stress occurring when the mobilized friction has 
reduced to the constant volume condition. Differences between the three pressuremeter insertion methods for the purposes 
of deriving strength are small. 
 
RÉSUMÉ 
L'insertion d'un pressiomètre ou d'un dilatomètre dans le sable modifie inévitablement l'état de contrainte initial, 
obscurcissant la première partie du test avec une contribution de perturbation. Dans les cas extrêmes où un appareil a été 
enfoncé dans le sol, la seule partie de l'expansion de la cavité ultérieure capable d'une analyse simple sera les données 
obtenues à la suite d'une inversion de contrainte. Cette approche est déjà utilisée pour dériver des mesures de module de 
haute qualité à partir de cycles de déchargement / rechargement (Hughes, 1982). Le même argument s'applique au 
déchargement final de la cavité. En plus de la rigidité, il est possible de dériver des paramètres de résistance sensibles au 
fur et à mesure que le déchargement se poursuit au-delà de la plage élastique et des rendements de matière dans le sens 
inverse. Les solutions sous forme fermée qui prennent la forme de la réponse contrainte / déformation pour le cas de 
contraction non drainée sont largement utilisées depuis un certain temps, mais pour la contraction drainée, elles donnent 
des résultats ambigus. Cet article utilise une approche aux différences finies basée sur Manassero (1989) pour examiner 
les données de contraction avec des hypothèses minimales et sans restrictions sur la forme de la courbe contrainte / 
déformation. Les résultats du déchargement des tests pressiométriques auto-forés, pré-forés et poussés dans divers 
matériaux dilatants sont présentés sous la forme de courbes de contrainte / déformation avec une contrainte de 
cisaillement maximale et un angle de frottement identifiés. Il est évident que la contrainte de cisaillement est différente 
pour ces deux événements, la contrainte de cisaillement maximale se produisant lorsque le frottement mobilisé est réduit 
à la condition de volume constant. Les différences entre les trois méthodes d'insertion du pressiomètre aux fins de 
détermination de la force sont faibles. 
 
 
 
1 INTRODUCTION 
 
A strain measuring pressuremeter is one of a small 
number of tools capable of deriving representative 
parameters from dilatant or granular materials. It is 
unique in being able derive strength and stiffness in a 
single test episode. The difficulty of the test is that 

parameters are not directly measured but are discovered 
by solving the boundary value problem. 

There are multiple analyses available for this 
challenge, all of which depend on idealizing the ground 
response and the mechanics of the test. Given the 
compromises it is encouraging how close the measured 
response can come to the predictions of an analysis.  



 

Figure 1 is a plot of the movements of the inside 
boundary of an expanding and contracting cavity in a 
silty dense sand. The initial cavity was made with a core 
barrel and the pressuremeter was placed in the cored 
pocket. A non-linear elastic/perfectly plastic solution 
adapted from Carter et al (1986) was used to find a 
parameter set able to account for every measured data 
point once it is accepted that the initial part of the loading 
is irrecoverable disturbance and falls outside of the 
solution. The details of the method are not the subject of 
this paper, but it is an illustration that a closed form 
analysis can be effective. 
 
 

 
Figure 1. Matching the field curve with a parameter set 
 
 
This example is a circumstance where loading and 
unloading data are available for analysis (the test also 
included small unload/reload cycles, but these have 
been omitted for clarity). Having valid data from both 
phases of the test means that parameter optimization is 
constrained. Although the solution is not unique the 
uncertainty is limited and can be quantified. The example 
is also a special case – the material is close to critical 
state. The internal angle of friction 𝜙𝑝𝑘  is almost the 

same as 𝜙𝑐𝑣 the constant volume friction angle. 
Consequently, there is no significant dilation and the 
contraction phase is straightforward to match. In general, 
this is not so.  

This is unfortunate because whatever means is used 
to place the pressuremeter (self-bored, pre-bored or 
pushed) some insertion disturbance is inevitable. 
Contraction data are free of such issues. For self-bored 
and pre-bored tests, it is likely that some part of the 
loading data can be analyzed. For the pushed test the 
loading phase is always indeterminate, and it is only 
following stress reversal that the possibility for identifying 
realistic stress/strain properties becomes possible. 
 
1.1 The Yielding Behaviour of Sands 
 
The yielding response of sands under an increasing 
radial stress can in many cases be simplified as perfectly 
plastic with shear stress escalating at a constant ratio. 
Provided that the cavity strain remains modest (typically 
10-15%) a fixed 𝜙𝑝𝑘 can be assumed (Hughes et al, 

1977). It is straightforward to derive the internal angle of 

friction from the cavity strain and effective radial stress 
changes at the borehole wall as shown in Figure 2. 

These assumptions do not hold when the material is 
unloaded. The contractive response of a sand in any 
condition other than critical state is not amenable to the 
imposition of a simple stress/strain response (for 
example Houlsby et al, 1986). The strain change over 
which the peak angle of internal friction can be sustained 
in contraction is small.  

Manassero (1989) is a relatively straightforward 
numerical method intended for high quality cavity 
expansion tests. The advantage offered by the 
Manassero solution over other potentially more exact 
analyses such as Yu et al (1995) is the minimal number 
of assumptions. Very little additional information from 
sources external to the test are required prior to 
interpretation. 
 
 

 

Figure 2. Finding ϕpk from cavity expansion data 

 
 

It has limitations concerning the calculation of the 
plastic strain increments and is prone to instability if the 
input data are not smooth. Nevertheless, it has the 
potential to clarify aspects of the ground response that 
cannot be captured by a closed form analysis (Figure 3). 
Note that Figures 1-3 are all using data from the same 
test. 
 
 

 
Figure 3. Applying Manassero ’89 to contraction data 
 
 



 

2 A DESCRIPTION OF THE MANASSERO 1989 
SOLUTION  

 
Solving the cylindrical cavity boundary problem means 
identifying the radial and circumferential strains 𝜀𝑟 and 

𝜀𝑐, and the radial and circumferential effective stresses 

𝜎΄𝑟 and 𝜎΄𝑐. Given any three, the fourth can be 
calculated. If the four parameters are known for one 
radius, then they are calculable for all. 

At the borehole wall, 𝜀𝑐 and 𝜎΄𝑟  are obtained directly 
from measurements the pressuremeter provides of 
radial displacement and total pressure P. This becomes 
effective stress P’ when the ambient pore water pressure 

is deducted. The solution finds 𝜀𝑟 by carrying out a series 
of finite difference calculations using the current gradient 
of the measured field curve. The calculation incorporates 
Rowes dilatancy relationship (Rowe, 1971). This is 
applied as a flow rule so there is no requirement to 
assume deformation at a single value of friction angle. 
Hence the solution can be applied to tests in loose and 
dense sands as it permits the non-linear nature of 
volume change during shear. 

The only additional data required that the 
pressuremeter test does not normally provide (but see 
later observations) is a value for the residual or constant 
volume friction angle 𝜙𝑐𝑣.  

The radial strain 𝜀𝑟  at a point (𝑖) corresponding to a 

measured data point of circumferential strain 𝜀𝑐 and 

effective pressure 𝑃′ is obtained as follows: 
 
 

𝜀𝑟(𝑖) = 𝐴 − 𝐵 + 𝐶 + 𝐷                 [1] 

 
 

where: 

𝐴 =
𝑃′(𝑖)[𝜀𝑐(𝑖−1)+𝑘𝑎

𝑐𝑣𝜀𝑟(𝑖−1)]

2[𝑃′(𝑖)(1+𝑘𝑎
𝑐𝑣)−𝑃′(𝑖−1)]

  

 

𝐵 =
𝑃′(𝑖−1)𝜀𝑐(𝑖)

2[𝑃′(𝑖)(1+𝑘𝑎
𝑐𝑣)−𝑃′(𝑖−1)]

  

 

𝐶 =
𝑃′(𝑖)[𝜀𝑐(𝑖−1)−𝜀𝑟(𝑖−1)]

2𝑘𝑎
𝑐𝑣𝑃′(𝑖−1)

     

 

𝐷 =
𝑃′(𝑖−1)[𝜀𝑟(𝑖−1)(1+𝑘𝑎

𝑐𝑣)−𝜀𝑐(𝑖) 

2𝑘𝑎
𝑐𝑣𝑃′(𝑖−1)

  

 

 

𝑘𝑎
𝑐𝑣  is the inverse of the constant volume stress ratio 

coefficient : 
 
 

𝑘𝑎
𝑐𝑣 =

1

𝑘𝑝
𝑐𝑣 =

1−𝑠𝑖𝑛 𝜙𝑐𝑣

1+𝑠𝑖𝑛𝜙𝑐𝑣
                      [2]  

 
 
The expansion of the cavity starts from zero radial 

strain allowing the first interval to be defined and hence 
starting the series of linked calculations. 

Once the radial strain 𝜀𝑟 is known, volumetric strain 

𝜀𝑣  and shear strain 𝛾 are calculated from the sum and 

difference of 𝜀𝑟 and 𝜀𝑐. Additionally, the principal stress 
relationship can be obtained through:  

 
 

𝜎𝑟

𝜎𝑐
= 𝑘𝑝

𝑐𝑣 Δ𝜀𝑐

Δ𝜀𝑅
                  [3] 

 
 

This allows the circumferential stress 𝜎𝑐 to be obtained 
and this in turn permits shear stress τ to be derived: 
 
 

𝜏 =  
𝜎𝑟−𝜎𝑐

2
                 [4] 

 
 
The current friction angle is given by: 
 
 

𝑠𝑖𝑛𝜙 =  
𝜎𝑟−𝜎𝑐

𝜎𝑟+𝜎𝑐
                 [5] 

 
 
2.1 Application of Manassero solution to contraction 

data 
 
At the end of loading, the radial stress and 
circumferential stress are at a maximum. For the 
purposes of implementing the Manassero calculations 
this maximum condition is treated as an origin and 
subsequent changes of stress and strain are calculated 
with respect to this point. Consequently, a plot such as 
Figure 3 is both an inversion and compression of the true 
state. This strategy is adopted to avoid having to know 
anything about the loading response other than the co-
ordinate of the last point prior to unloading.  

The modifications are straightforward. The point of 
maximum displacement (𝑢𝑚𝑥) and pressure (𝑃𝑚𝑥) must 

be identified, and an unloading pressure (𝑃𝑎𝑑𝑗
′ ) and 

unloading cavity strain (𝜀𝑎𝑑𝑗) calculated: 

 
 
𝑃𝑎𝑑𝑗

′ = 𝑃′𝑚𝑥 − 𝑃′                 [6] 

 
 

𝜀𝑎𝑑𝑗 = −
𝑢𝑚𝑥−𝑢

𝑟+𝑢𝑚𝑥
                          [7] 

 
 

𝑃𝑎𝑑𝑗
′  and 𝜀𝑎𝑑𝑗 replace 𝑃′ and 𝜀𝑐 in equation 1. 

Figure 4 is an example of this approach used to find 
the peak friction angle. Shear stress is plotted against 
normal stress and the slope of the initial part is used to 
find a value for 𝜙𝑝𝑘. These are the same data used in 

Figure 3 to find the internal angle of friction angle at 
maximum shear stress. The loading data for this test 
derived using Manassero is also shown in Figure 4. 
These data are significantly noisier for reasons 
discussed below. Nevertheless, the trend is similar to the 
unloading behaviour and supports the argument that 
contraction data can be used to find key soil properties 
independently of the loading. 



 

 
 

 
Figure 4  Shear stress vs Normal stress 
 
 
2.2 Issues with the Manassero method 
The difficulty with implementing the analysis is that real 
data are generally too noisy for use as direct input. The 
pressuremeter data in the published paper come from 
ideally installed self bored tests in a chamber and are still 
insufficiently quiet. Manassero suggests fitting the data 
with a 7-degree polynomial but the form of a test is 
surprisingly subtle and significant detail can be masked. 
In particular, the necessary carrying out of unload/reload 
cycles causes minor disruption to the loading response 
but disproportionate damage to the numerical 
calculations (Figure 4, loading data).  

Cavity unloading tends to be less affected by the 
disruption caused by cycling and the release of pressure 
is a throttled leak that gives an inherently smooth 
response. There is no particular difficulty is applying 
equation 1 directly to the measured readings. However, 
there is a resolution problem because the strain steps 
between data points are relatively coarse. This makes 
analysis using direct data more appropriate for strength 
rather than stiffness parameters. 

The other potential problem is the assumption 
concerning strain once the material is yielding. 
Manassero (1989) follows Hughes et al (1977) in 
ignoring the elastic contribution to the plastic increment, 
in effect assuming that Poisson’s ratio υ is 0.5. For a 
drained event this is not true. The error can be large. 
especially in less stiff materials. Figure 5 compares the 
expansion curves obtained with two similar analyses 
using the same parameter set. Carter et al (1986) 
includes for compressibility (υ = 0.3). Hughes et al (1977) 
ignores it, as does Manassero (1989).  
 
 

 

Figure 5  The effects of compressibility 

 
 

However up to about 3% shear strain the magnitude 
of the error is minor and the critical parts of the drained 
cavity contraction are within this limit. The change of 
stress required to achieve reverse yield typically is about 
70% of the maximum pressure and the shear strain at 
this point will be < 2% (see Figure 1). Reverse plasticity 
is represented by only a few data points. 
 
 
3 EXAMPLES 
 
Figures 6 and 7 are from a test in a dense slightly silty 
sand that has been self-bored. There is some 
disturbance in the initial part of the loading. Figure 6 is 
an attempt to model the field curve using the same 
methods as were applied in Figure 1. Unlike the previous 
example, the sand is still dilating when the contraction 
phase commences. 
 
 

 

Figure 6.  Curve modelling with a closed form solution 

 
 

The data between the points ‘A’ and ‘B’ are not well-
matched by the closed form solution. The Manassero 
method applied to the contraction phase of this test is 
shown in Figure 7, which indicates between points A and 
B a phase of apparently constant shear stress.  
 
 



 

 

Figure 7.  Contraction data plotted using Manassero 
1989 

 
 

This is misleading and is a consequence of referring 
the stresses to a contrived origin. Point ‘A’ indicates 
where the principal stresses are equal and about to 
change sense – the radial stress becomes the minor 
stress and the circumferential or hoop stress becomes 
the major stress. Point ‘B’ marks the onset of reverse 
failure – it is more ambiguous than point ‘A’. The 
relationship between the principal stresses and these 
points of significance are shown schematically in Figure 
8 where the test starts from the Insitu lateral stress 𝜎𝐻𝑂. 
 
 

 

Figure 8. Stress path followed during a cavity expansion 
and contraction 

 
 

The attraction of the Manassero 1989 solution is the 
ability to examine the contraction phase of tests where 
total insertion disturbance makes the loading data 
indeterminate.  

Figures 9 and 10 are from such a test, where a small 
diameter pressuremeter has been pushed into a glacial 
sand.  
 
 

 

Figure 9. Example of a pushed test in glacial sand 

 
 

 
Figure 10. Contraction data plotted using Manassero 
 
 

The test is shown complete, including unload/reload 
cycles, the first of which occurs too early in the test and 
does not give a representative response. Subsequent 
cycles are consistent and also a good match for the initial 
part of the final unloading.  

The point where the membrane loses contact with 
the borehole wall is also indicated, and it is evident that 
the strain range for contraction is considerably smaller 
than that for the expansion.  

The shear stress plot obtained from the contraction 
phase is shown in Figure 10 with a peak friction angle 
identified and a second friction angle taken from the point 
where a plateau of constant stress becomes apparent. If 
the assumption that this second smaller value is the 
constant volume angle 𝜙𝑐𝑣  is correct, then it is a means 
through iteration of deriving this required parameter 
when third-party data are not available. For example, in 

this test the assumed value for 𝜙𝑐𝑣  was 30°. The results 
imply that 31° would be more appropriate.  

The final examples are a pair of tests taken at the 
same level in structureless chalk. The location was a 
large near-shore jack-up platform with two drill rigs set-
up on opposite sides. From one rig a full displacement 
type pressuremeter known as an RPM was pushed down 
a pilot hole formed by a 10cm2 Cone Penetrometer 
(CPT), whilst the other rig was used to drive a self-boring 
pressuremeter (SBP).  



 

 
 

 

Figure 11. SBP and RPM tests in chalk 

 
 
Despite an obvious difference in the loading response, 
the two contraction phases of the tests give almost 
identical results (Figure 11 and 12). The magnitude of 
the shear stress depends on the starting state at the 
point of unloading, but the peak and residual friction 
angles are very similar, despite the enormous difference 
in damage caused to the material in the vicinity of the 
pressuremeter by the two insertion techniques. The 
shear stress curve for the RPM test is noisier than the 
SBP test. It is a smaller diameter probe and the manner 
in which it is deployed means that it is vulnerable to wave 
action. 
 
 

 
Figure 12. Contraction data for two tests in chalk 
 
 
Note that the length of the strain scale is reducing for the 
three examples. The test in chalk (Figure 11) is only a 
third of the length of the silty sand (Figure 7).  
 
 
4 CONCLUSIONS 
 
There is nothing new in the analysis presented here, the 
novelty is the application to a part of the test that has not 
previously been examined in this way. Due to the special 
nature of the mechanics of implementing a cavity 

contraction (and the relative absence of creep), these 
data are unusually smooth and can be used as direct 
input to the proposed numerical solution.  

The advantage of contraction data is that no matter 
how intrusive the insertion method used to place the 
pressuremeter, the unloading will give a representative  
response. This is well-known in the context of 
unload/reload cycles, and also in curve modelling 
undrained contraction (Jefferies, 1988, Whittle, 1999) 
but the difficulties of interpreting the drained response 
means that there is limited reportage of parameters from 
this part of the test. 

Unlike the loading phase of the test where large parts 
are conducted at more or less the same peak friction 
angle,  𝜙𝑝𝑘   in unloading is reducing throughout. This is 

complex behaviour to capture in a closed-form solution, 
hence the use of a numerical method. 

The assumptions of the Manassero 1989 analysis 
are minimal and its limitations are not as significant for 
contraction data as they are for the loading.  

The solution only considers the contribution of a 
purely frictional behaviour, although it has been applied 
to material with a modest degree of cohesion. A more 
complex solution that explicitly allowed for cohesion 
would be helpful and is an area that is currently being 
investigated. 

Forcing the contraction data to start from zero, rather 
than its true state, means that what is presented is a 
stratagem rather than an analysis. Our suggestion is that 
the data are presented as plots of shear against normal 
stress (Figure 4), for finding the peak angle of internal 
angle, and plots of shear stress against shear strain (i.e 
Figure 7) for identifying the constant volume friction 
angle and significant strains.  

More generally it is apparent that modelling the field 
response with a closed form solution that reproduces 
loading and contraction data is difficult. The contraction 
internal friction angle declines from the peak to a residual 
value quickly, an effect which requires a much larger 
strain when expanding the cavity. Capturing the 
response from the end of loading to yield in extension 
requires a non-linear function. In addition, it seems likely, 
from the examples shown here, that following point ‘B’ 
(Figure 8) the mobilized friction angle will remain the 
constant volume value.  
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