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ABSTRACT 
A generalized subgrade model is presented by Worku (first author) for subgrades idealized an elastic layer overlying a 
rigid base. By implementing this model a governing differential equation of strip plate on elastic foundation is formulated. 
A closed form particular solution of infinite and finite strip plate, when using winkler type and Kerr equivalent Pasternak 
model are obtain by using different boundary conditions under different loading conditions. A finite element based Plaxis 
2D software is used to calibrate the subgrade models. A numerical illustration is provided using this model in comparison 
with Plaxis 2D models. The result show that the calibrated variants give a good results in agreements with finite element 
outputs .consequently, the calibrated models can be used in routine analysis of strip plates on elastic foundation and can 
be incorporated in commercial software. 
 
RÉSUMÉ 
Un modèle de sous-sol généralise est présente par Worku (premier auteur) pour les sous-niveaux idéalises d’une couche 
élastique recouvrant une base rigide. En mettant en œuvre ce modèle, une équation différentielle régissant la plaque de 
bande sur la fondation élastique est formulée. Une solution particulière de forme fermée de plaque a bande infinie et finie, 
lors de l’utilisation du type Winkler et du modèle Pasternak équivalent Kerr, est obtenue en utilisant différentes conditions 
aux limites dans différents conditions de chargement. Un logiciel de Plaxis 2D a éléments finis est utilisé pour calibrer les 
modelés de fondation. Une illustration numérique est fournie en utilisant ce modèle en comparaison avec les modèles 2D 
de Plaxis. Le résultat montre que les variantes calibrées donnent de bons résultats dans les accords avec les sorties 
d’éléments finis. Par conséquent, les modèles calibrés  peuvent être utilisés dans l’analyse de routine des plaques de 
bande sur fondation élastique et peuvent être incorporés dans un logiciel commercial. 
 
 
 
1 INTRODUCTION 
 
Plates on elastic foundation are regularly used in civil or 
mechanical engineering works, such as building 
infrastructures, roads, railroad, storage tanks or silos 
foundations, aerospace engineering etc. The key issue in 
the analysis is modeling the contact between the structural 
elements- the plate or beam-and the soil bed (soil-structure 
interaction (SSI) problem).  

There are two approaches to develop analytical 
subgrade models, namely continuum and mechanical. 
Elastic continuum models typically idealize the subgrade 
as an elastic medium and specifically as a layer overlying 
a rigid base, and involve three parameters consisting of the 
elastic modulus, the Poisson’s ratio and the layer 
thickness. It is apparent that all continuum models 
available make certain simplifying assumptions to ease the 
mathematical work involved in the process of devising the 

models. These models have the advantage that the elastic 
constants can be established from tests but suffer from a 
common shortcoming that they are difficult to apply 
directly. While in mechanical models, the higher order 
models were devised with the intention of improving on the 
drawbacks of the simplest and long- enduring Winkler 
single-spring-bed model by introducing additional 
elements to ensure shear interaction among the springs 
that is missing in Winkler’s model. However, mechanical 
models suffer in general from a major common drawback 
of not suggesting ways of estimating the model 
parameters. 

Recently, a newly developed generalized continuum 
subgrade model has been introduced by Worku (2010). It 
considered all stress, strain and displacement components 
unlike other models proposed in the past. Based on this 
model, this paper tries to give analytical solutions for strip 
plates under basic loading cases. Furthermore, it also tries 



 

to calibrate the model parameters and to compare the 
results with the classical models and selected FE based 
modeling software. 

 
1.1 Generalized Model  
 
Worku (2010) proposed a new approach of continuum 
modeling by addressing the major shortcomings other 
continuum models. The subgrade is idealized as an elastic 
continuum of finite thickness H. This approach of the 
subgrade by an elastic stratum is convenient in developing 
the model of both an actual elastic stratum of finite 
thickness overlaying a rigid base as well as for very thick 
strata commonly idealized as a uniform half space. 

All continuum models including the generalized 
continuum models developed by Worku are sensitive to 
thickness H of the stratum. When the thickness of the soil 
layer increases, it may give unrealistic or excessive 
deformation. In latter case he express H in terms of the 
foundation width, B, as  𝐻 = 𝜒𝐵 and the coefficient 

determined from comparison of analytical results with 
results of finite element model. In later section of this paper 
the calibration factor  for strip on elastic foundation will 

be done. 
 
1.2 Synthesis of Winkler Model with the Generalized 

Winkler Type Continuum Model 
 
By synthesis the mechanical and continuum models Worku 
(2013) express the Winkler mechanical model parameter 
in terms of continuum parameters  
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=Ks
(1- 0.4ν)H

                                                       [1]  

 
 

Where k s
is modules of subgrade reaction or coefficient 

of subgrade reaction for Winkler, E s
 is modules of 

elasticity of the soil, υ  Poisson’s ratio of the soil and H layer 

thickness of the soil.  
 
1.3 Synthesis of Pasternak Model with the 

Generalized Kerr-Equivalent Pasternak Type 
Continuum Model  

 
Worku also express the Pasternak model parameters in 
terms of Kerr equivalent Pasternak continuum model it 
take the following form  
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Where k p
modulus of subgrade reaction for Pasternak 

model, GP
is coefficient of shear element in Pasternak’s 

model and 𝐺 is shear modules of the elastic foundation. 

 
 

2 ANALYSIS OF STRIP PLATE ON ELASTIC 
FOUNDATION 

 
The differential equation (DE) of a plate of rigidity D on an 
elastic subgrade when it is subjected to a transverse load 
q is given by 
 
 

4D w(x) +P(x) = q(x)                                                  [3] 

 
 
In which p is the contact pressure and w is the surface 

deflection and ∇ is the Laplace operator. However, the 

governing equation for strip plate will have the form of ODE 
Equation. 
 
 

4D w(x) + p(x) = q(x)                                                   [4] 

  
 

This is because of a strip plate is one dimensional 
problem (length along y-axis is very long). Therefore, all 
the derivative with respect to y are zero and the plate will 
be only a functions of x. 
 
2.1 Plate on Single Parameter Model   
 
In this case consider bending of a uniformly loaded strip 
plate subjected to transverse load supported over the 
entire bottom surface by an elastic foundation. 
  
 

 
Figure 1. A strip plate on Winkler’s mechanical model 
 
 

p = wks                                                                        [5] 

 
 



 

Now introduce Winkler model and combining equation 
[4] and [5] the differential equation for the deflection 
surface of the plate supported on elastic Winkler 
foundation become 
 
 

4
ksD w(x) + w = q(x)                                                  [6] 

 
 

The homogenous equation becomes 
 
 

4

2 ks

d w

dx
D + w = 0                                                        [7] 

 
 

Since the equation [7] is an ODE with coefficient the 
general solution is obtain as  
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Where 𝜉 is the characteristic width of strip plate 
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D
 = , a = width of strip plate and C1, 

C2,C3 &C4 are open constants. 
The open constants can be determine from boundary 

condition for infinite and finite strip plate when subjected to 
different loading conditions 
 
2.2 Plate on Two Parameter Model   
 
To improve inherent problems with the Winkler model 
Pasternak model improve the inherent problem of Winkler 
model by connecting the ends of the springs by a shear 
layer, consisting of incompressible, vertical element which 
can deform only by lateral shear. 
 
 

 
Figure 2. A strip plate on Pasternak mechanical model 

 

2p(x) = w(x) - w(x)Gkp p                                             [9] 

 
 

Combining equation [4] and [9] the differential equation 
for the deflection surface of the plate supported on elastic 
Pasternak foundation becomes. 
 
 

24  GD w(x) + w(x) - w(x) = q(x)pkp                          [10] 

 
 

The homogenous equation becomes  
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To solve this differential equation the following 
parameters are assumed  
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Since Equation [13] is an ODE with constant coefficients 
three possible cases of general solution will be obtain 
depending on whether  

,  < 1/ 4 = 1/ 4 & > 1/ 4   

 

Case 1   < 1/ 4  
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Where 
1 2

1 4 , 1 4      and A1, A2, A3 & A4 are 

open constants  
 

Case 2   = 1/ 4  
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Where 1 2  and B1, B2, B3 & B4 are open constants 

       

Case 3  >1/4  
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Where 
1 2

1 4 , 1 4      and E1, E2, E3 & E4 are 

open constants.  
All the open constants can be determine from boundary 

condition for infinite and finite strip plate when subjected to 
different loading conditions. 
 
 
3 NUMERICAL ANALYSIS AND CALIBRATION 
 
To determine the unknown parameters of mechanical 
model one can synthesis the two models the same orders 
will enable to quantify the mechanical model parameters in 
terms of known parameters of the continuum mode. 

Different solution cases were obtained for strip plates 
on a two parameter subgrade model depending on the 
value of the parameter ρ. It is important to identify which 
case represents the most likely scenario for real problems. 
This can be done by plotting ρ against another carefully 
selected parameter, incorporating all factors influencing ρ 
for selected values of thickness of stratum, H. 

As it can be seen from equation [12], ρ is a function of 
the modulus of elasticity of the strip plate (Ep), shear 
modulus of the soil (G), depth of strip plate (hp), poission’s 
ratio of the soil (𝛖) and the thickness of the stratum (H).The 

effect of these parameters on 𝜌 can be seen by introducing 

the use of the following dimensionless stiffness factor or 
relative rigidity of the soil-plate system as suggested by 
Rajapakse and Selvadurai (1991).  
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                                                           [17]  

 
 

Where Kr =relative rigidity of the soil-plate system. 
Plots of 𝜌 against Kr are re given in Fig 3 & 4. For clay and 

granular soils for range of H/a values. The plot revealed 
that the value of 𝜌 lies in case III ,when the ratio of H/a is 

greater than 0.85 for clay soils and 0.48 for sand soils .on 
the other hand, when H/a is less than 0.85 and 0.48 for 
clay and sand soils respectively, case I should be 

considered. Due to the fact the ratio H/a less than 0.48 is 
rare, the most realistic scenario is seen in case III. 
Therefore, it can be concluded that for all practical 
purposes it is sufficient to consider only case III.  
 
 

 
Figure 3. Effects of Kr and H on 𝝆 for Clay soli 

 
 

 
Figure 4. Effects of Kr and H on ρ for Sand and gravel soil  
 
 

As mention in the above Worku’s model are sensitive 
to the thickness .Therefore, it is important to calibrate this 
model by using finite element based model. Whereby a 
calibration factor associated with H is introduced, Plaxis 2D 
software is used as yardstick. 

The first step is finding the optimum mesh size in the 
for finite element modeling (Plaxis 2D).After fixing the 
average mesh size the next step is calibration of the 
Winkler-Type and Kerr-equivalent Pasternak –Type model. 
This is attained after a number of analysis involving 
different types of soils, with various relative thickness of the 

stratum with respect to strip plate width /H a   

subsequently, the maximum deflection, 𝑤𝑚𝑎𝑥 will be 

plotted against 𝜒 for infinite and finite length strip plate 

subjected to different loading cases. 
In order to find the value of χ, first tangent line is drawn 

to the Plaxis plot, where it becomes almost constant. Then 
the intersection point between the tangent line and the 
corresponding graph of the models becomes the range 
value of χ. This step is illustrated in Fig 5 and 6. Finally, a 
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calibration factor for each combination of representative 
type of soil and loading condition is obtained by 
establishing best fitting trend between the identified range 
values of χ against characteristic length (𝜉). 

 
 

 
Figure 5. Determination of 𝜒 value for long strip plate 

subjected to selected basic loading types 
 

 
 
Figure 6. Determination of 𝜒 value for shot strip plate 

subjected to selected basic loading types 
 
 
Table 1 Summary of calibration factor for Winkler type and 
Kerr-equivalent Pasternak type model for infinite strip plate 
 

 
Recommended values of χ for Infinite strip plates on different 
soil types for the respective loading conditions 

Soil Type Central Concentrated 
Load 

Uniformly Distributed 
Load 

 Winkler’s  

Model 
(χw) 

Pasternak’
s  

Model (χp) 

Winkler’
s  

Model 
(χw)            

Pasternak’
s  

Model (χp) 

 

Soft Clay 1.09 2.45 1.1 2.75 

Loose sand 1.04 2.43 1.07 2.73 

Medium Stiff 

Clay 

0.95 2.42 0.99 2.66 

Medium 

Dense sand  

0.94 2.41 0.98 2.64 

Stiff Clay 0.9 2.39 0.92 2.52 

Dense Sand 0.89 2.38 0.91 2.51 

 
 
Table 2 Summary of calibration factor for Winkler type and 
Kerr-equivalent Pasternak type model for finite strip plate 
 

 
Recommended values of χ for Infinite strip plates on different 

soil types for the respective loading conditions 

Soil Type Central Concentrated 
Load 

Uniformly Distributed 
Load 

 Winkler’s  

Model 
(χw) 

Pasternak’
s  

Model (χp) 

Winkler’
s  

Model 
(χw)            

Pasternak’
s  

Model (χp) 

 

Soft Clay 3.83 3.85 3.99 4.12 

Loose sand 3.82 3.83 3.95 4.02 

Medium Stiff 

Clay 

3.79 3.67 3.82 3.93 

Medium 

Dense sand  

3.78 3.65 3.81 3.92 

Stiff Clay 3.7 3.52 3.79 3.83 

Dense Sand 3.69 3.50 3.78 3.82 

 
 

The recommended calibration factors for a strip plate 
resting on different soil types and subjected to selected 
loading cases as established from best fitting plots are 
presented in the above tables. 
 
3.1 Calibrated Model Parameters  
 

As stated above, a calibrating parameter is introduced 
through the relation. 

 
 
aH                                                                     [18] 

 
 

Introducing equation [18] in equation [1] and [2] one 
can obtain the calibrated model parameters 
 

Winkler type model  
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Kerr equivalent Pasternak model 
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3.2 Comparison of Models after Calibration  
 
Numerical comparisons of Winkler type and Kerr 
equivalent Pasternak model are made with Plaxis outputs 
for selected loading conditions and for relative rigidities of 
soil-plate system. The comparison is made for both finite 
and infinite strip plate. The classification as a long, 
intermediate and short strip plate is based on Hetenyi 
suggestion (Hetenyi 1946). Thus, intermediate and short 
strip plate are treated as finite strip plates.  
 
3.2.1 Infinite Strip plates 
 
Numerical calculation are carried out for infinite strip plates 
subjected to concentrated and uniformly distributed loads. 
The comparison deflection curves are presented in for 
plate and soil properties given in table 3. Representative 
soft soil and hard soil types are considered. Furthermore a 
sample example is selected and its Plaxis output for strip 
plate subjected to point is presented in the following 
section.  
 
 
Table 3 Types of soils, strip plate and loading properties 
considered for the analysis   
 

 
Types of soils 

Elastic 
modules  (𝐸𝑠) 

Poisson’s ratio 
(𝜐𝑠) 

   

Loose sand 20000 KN/m2 0.3 

Dense sand 81000 KN/m2 0.2 

Strip plate property  Loading  

Elastic modulus , 𝐸𝑝 25Gpa Concentrated  

Width ,𝑎 20m 100KN/m 

Depth ℎ𝑝 0.15m Uniform 

Poisson’s ratio , 𝜐𝑝 0.2 50KN/m2,Loaded 
region 2m 

   

 
 
Table 4 Finite element (plaxis 2D ) Inputs  
 

Types of 
element  

Plate model  Soil model  

15 nodes  Plain strain model  Linear elastic model  

 

 
Fig 7. Plaxis Geometry Model  
 
 

 
Fig 8.Plaxis model output of deformation mesh for strip 
plate resting on loose sand soil & subjected to point load  
  
 

 
 
Fig 9.Plaxis model output of Total displacement for strip 
plate resting on loose sand soil & subjected to point load  
 
 



 

 
Fig 10. Long strip plate on loose sand soil subjected to a 
point load 
 
 

 
Fig 11. Long strip plate on dense sand soil subjected to a 
point load 
 
 

 
 
Fig 12. Long strip plate on loose sand soil subjected to a 
uniformly distributed load 
 
 

 
Fig 13. Long strip plate on dense sand soil subjected to a 
uniformly distributed load 
 
 

A review of the curves reveals a number of significant 
observations. The maximum deflection obtained by the two 
models is in good agreement with the FE based Plaxis 
model. However, there is a deviation of deflection when 
moving away from the mid span. This becomes more 
pronounced in the Winkler-Type model especially in soft 
soils where deviations may amount to up to 45% in the 
case of concentrated load and 20 % in uniformly distributed 
cases. This is due to the fact that Winkler-Type model does 
not consider the shear interaction behavior of the soil, from 
the outset despite the calibration. Additionally, because the 
calibration factor is solely dependent on the maximum 
deflection, it is certain to have deviations when moving 
away from the maximum deflection. As far as the Kerr-
equivalent Pasternak type model is concerned, a very 
good agreement with the reference FE based analysis 
result is obtained over the majority of the plate width. 

Though not presented here, a similar trend is observed 
in the internal moments, the deviation increases when 
moving away from mid span but ultimately decreases 
before it reaching the edge of the plate. Whereas in the 
shear force it is invariably the same for all models. 

 
3.2.2 Finite Strip plates 
 
A similar analysis has been conducted for finite strip plate 
of 3m length subjected to concentrated load at mid span 
and uniformly distributed. For the analysis purpose the 
same properties are used as table 3. 

 
 

-16

-14

-12

-10

-8

-6

-4

-2

0

-15 -10 -5 0 5 10 15

D
e

fl
e

c
ti
o

n
 (

m
m

)

Length (m)

Deflection Vs Length

winkler

pasternak

plaxis

-5

-4

-3

-2

-1

0

1

-15 -10 -5 0 5 10 15

D
e
fl
e

c
ti
o

n
 (

m
m

)

Length (m)

Deflection Vs Length

winkler

Pasternak

plaxis

-14

-12

-10

-8

-6

-4

-2

0

2

-15 -10 -5 0 5 10 15

D
e
fl
e

c
ti
o

n
 (

m
m

)

Length (m)

Deflection VS Length

winklear

plaxis

pasternak

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

-15 -10 -5 0 5 10 15

D
e

fl
e

c
ti
o

n
 (

m
m

)

Length (m)

Deflection Vs Length 

winkler

plaxis

pasternak



 

 
Fig 14. Short strip plate on loose sand soil subjected to 
point load 
 
 

 
Fig 15. Short strip plate on dense sand soil subjected to 
point load 
 
 

 
Fig 16. Short strip plate on loose sand soil subjected to 
uniformly distributed load 
 
 

 
Fig 17. Short strip plate on dense sand soil subjected to 
uniformly distributed load 
 
 

As could be observed from the figures, the deflection 
shows little deviation throughout the plate in all models. For 
some particular soils, the maximum deflection obtained by 
Winkler type model gives a slightly higher values in the 
case of concentrated vertical load. Whereas, the maximum 
deflection is slightly lower in the case of uniformly 
distributed load. It should be noted that for Kerr equivalent 
Pasternak model is in an excellent compliance with Plaxis 
2D model outputs.  

The differences in the moments, which are not 
provided here, are smaller and those of the shear are 
almost negligible. 
 
 
4 CONCLUTION 
 
A set of generalized closed form solutions for deflection are 
obtained for strip plate supported by elastic foundation 
under selected basic load basic load types. The inherent 
sensitivity of the models to layer thickness has been 
avoided by calibrating them with respect to the thickness 
itself normalized with respect to strip plate width. For long 
strip plate very small deviation in maximum deflection for 
both models but eventually increases when moving away 
from mid span. This is more pronounced in Winkler type 
model, due to the fact the assumption when formulating the 
model does not include shear interaction behavior of the 
soil. Moreover, since the calibration factor is linked solely 
to maximum defection, it is certain to have deviations when 
moving away from the maximum deflection. In short strip 
plate deviation of deflection between the models and the 
Plaxis 2D is very small. The deviation in bending moment 
modestly increases when moving away from the mid span 
but ultimately decreases before reaching the edge of long 
strip plate. In contrary for short strip plates the models are 
concurrent with slight deviation with FE based software. 
The shear force is invariably the same for all models. It 
implies that it is little affected by the type of model used. 
Generally, in all cases using the recommended calibration 
factor provided in table 1-2, the Kerr equivalent Pasternak 
type model gives more compatible results to Plaxis 2D 
outputs than Winkler type model. Therefore by using this 
model and the accompanying spreadsheet program, 
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practical analysis of strip plate on an elastic foundation can 
be easily performed. 
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