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ABSTRACT 
This paper presents a novel, economical, and prompt method to estimate the in-situ stresses and geomechanical 
parameters from borehole deformation data, which are determined from four-arm caliper logs. The methodology includes 
a poro-visco-elastic Finite Element Method simulation to quantify the time-dependent borehole deformation of shale and 
an optimization approach of the in-situ stresses inversion. It is observed first that the time-dependent borehole deformation 
is mainly influenced by the visco-elastic properties of the rock; second,  that the inverted maximum horizontal in-situ stress 
for visco-elastic shale rocks is substantially smaller than that of a linear-elastic calculation; and last, the estimate Young’s 
modulus for visco-elastic rocks is much higher than the Young’s modulus calculated from linear-elastic rocks.  
 
RÉSUMÉ 
Cet article présente une méthode nouvelle, économique et rapide pour estimer les contraintes in-situ et les paramètres 
géomécaniques à partir de données de déformation de forage, qui sont déterminées à partir de diagraphies d'étrier à 
quatre bras. La méthodologie comprend une simulation poro-visco-élastique de la méthode des éléments finis pour 
quantifier la déformation du puits de forage en fonction du temps et une approche d'optimisation de l'inversion des 
contraintes in situ. On constate tout d'abord que la déformation du forage en fonction du temps est principalement 
influencée par les propriétés visco-élastiques de la roche; deuxièmement, que la contrainte horizontale in-situ maximale 
inversée pour les roches schisteuses visco-élastiques est sensiblement inférieure à celle d'un calcul linéaire-élastique; et 
enfin, le module de Young estimé pour les roches visco-élastiques est beaucoup plus élevé que le module de Young 
calculé à partir des roches linéaires-élastiques. 
 
 
1 INTRODUCTION 
 
In-situ stresses measurements and laboratory 
geomechanics parameter tests generally require a 
substantial overhead cost and a long waiting time, yet the 
results may only be available for limited formations in only 
a few wells in an oilfield.  For example, casing shoe leak-
off tests are never taken within a producing reservoir and 
are generally in shale strata. Moreover, properties 
achieved from the lab are not necessarily those appropriate 
for in-situ stress change analysis, where mismatched 
confining stresses must be applied to mimic the in-situ 
conditions underground.  

Therefore, there have been efforts to develop 
economical empirical methods to estimate in-situ 
horizontal stresses. The commonly used empirical method 
in oilfield practice is based on empirical correlations 
between rock mechanical properties or rock physical 

properties and the values from geophysical sonic and 
density logs (Desroches & Kurkjian, 1999; Chang et al., 
2006; Sinha et al., 2008; Najibi et al., 2017). In recent 
years, some efforts have been devoted to the in-situ stress 
determination from breakouts information (Zhang et al., 
2018a; Zhang et al., 2018b; Zhang et al., 2019; Zhang and 
Yin, 2019; Zhang and Yin, 2020). Such methods require no 
hydraulic fracturing data; the width and depth of breakouts 
are the main inputs for this inversion method. 

In 2018, Han and Yin (Han and Yin, 2018a; 2018b), 
developed a method to determine in-situ stresses and rock 
mechanics properties using borehole deformation data 
read from four-arm calipers logs. The methodology 
considers the original borehole size as an unknown 
parameter to obtain reasonable borehole deformation in 
the field. Then, the linear elastic analytical calculation, 
artificial neural network modeling, genetic algorithm 
method, and probabilistic analysis are integrated to narrow 



 

the uncertainty ranges of the estimated rock mechanical 
properties and the in-situ stresses from borehole 
deformation information. 

However, in drilling practices of unconventional 
resources, a shale borehole wall might deform in a time-
dependent manner due to a viscous response of the rock. 
Obvious differences in caliper log measurements between 
active drilling data and days after drilling using geophysical 
logs have been observed showing time-dependent 
borehole wall deformations (Bonner et al., 1992). 
Moreover, a borehole will become non-circular 
instantaneously after drilling because of stress anisotropy. 
Research has shown that only 2% of the principal axis 
length difference in an elliptical borehole geometry can 
lead to a 5% difference in the minimum horizontal stress 
(σh) calculation and a 10% difference in the maximum 
horizontal stress (σH) calculation (Han et al., 2018). 
Therefore, the conventional circular-borehole-based linear-
elastic analytical solutions might not be adequate for 
inverting stresses from four-arm caliper measurements in 
actual oilfield practice. A poro-visco-elastic simulation 
approach is developed using the Finite Element Method 
(FEM) to quantify the time-dependent borehole 
deformation and to analyze its influence on the inversion 
process for in-situ stress estimation. 
 
2 NUMERICAL MODELING OF TIME-DEPENDENT 

BOREHOLE DEFORMATION IN PORO-VISCO-
ELASTIC ROCKS 

 
2.1 Problem Definition  
 
A three-dimensional FEM model for a single-layer circular 
borehole is developed and used to analyze the poro-visco-
elastic deformation of the borehole wall. The model can be 
conveniently modified to comply with irregular boreholes 
and multi-layers in future research. The cross-section 
plane view of the mesh is shown in Figure 1.  

 

 
Figure 1. Cross section plane view of mesh with boundary 
conditions 

 
The model dimension is 2 meters by 2 meters (from 

borehole center to edges) by 0.02 meters (vertical layer 
thickness). The original borehole diameter is assumed to 
be 8.7 inches (0.22 meters). Twenty-node brick elements 

are employed for the FEM model, as shown in Figure 2. 
The total number of elements is 450; the total number of 
nodes is 3378.  

 

 
Figure 2. A 20-node brick element of FEM 
 
2.2 Governing and Constitutive Equations 
 
The governing equations for the equilibrium of forces with 
body forces ignored are shown as follows: 
 

𝜕𝜎𝑥𝑥

𝜕𝑥
+

𝜕𝜏𝑦𝑥

𝜕𝑦
+

𝜕𝜏𝑧𝑥

𝜕𝑧
= 0                      [1] 

 𝜕𝜎𝑦𝑦

𝜕𝑦
+

𝜕𝜏𝑥𝑦

𝜕𝑥
+

𝜕𝜏𝑧𝑦

𝜕𝑧
= 0                             [2] 

𝜕𝜎𝑧𝑧

𝜕𝑧
+

𝜕𝜏𝑥𝑧

𝜕𝑥
+

𝜕𝜏𝑦𝑧

𝜕𝑦
= 0                         [3] 

 

where i =x,y,z, j= x,y,z, σ stands for normal stress,  stands 
for shear stress. By combining the above governing 
equations, the generalized Hooke's Law, and the strain-
displacement relations, the Navier's equation without the 
body force term can be written as follows: 
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where  and G are the elastic constants of the material ( 

is Lamé's first parameter, G is Lamé's second parameter 
or the shear modulus), and, ux, uy, uz are displacements 
in the x, y, and z directions respectively.By applying 
Galerkin's method, the element elastic stiffness matrix is 
described as follows: 
 

𝑲 = ∭ 𝑩𝑇𝑫𝑩𝑑𝑥𝑑𝑦𝑑𝑧                                    [7]  

 
The solution in global matrix form is described as 
 
 [M][u]=[fu]                                               [8]  
 
where M is elastic stiffness matrix, u is the vector of 
displacements, and fu is the vector of nodal loads. The 



 

FEM formulation for the poro-visco-elasticity theory can 
be written as the following: 
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where M(t), S(t), and C(t) are time-dependent elastic 
stiffness, flow capacity, and coupling matrices 

respectively, H is flow stiffness, t is the time increment. 
The explicit expressions of the above matrices are as 
follows:  
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where Np is shape function, K, Kf and Ks are the bulk 
moduli of the matrix, fluid, and solid skeleton respectively, 
iT=[1,1,1,0,0,0], and D is the elasticity matrix expressed 

using Young’s modulus E and Poisson’s ratio  
  
2.3 Boundary and Initial Conditions 
 
Boundary conditions and initial conditions for the proposed 
FEM are: 

• the borehole wall is subjected to mud pressure.  
• the right boundary is subjected to the far field 

maximum horizontal stress. 
• the top boundary is subjected to the far field 

minimum horizontal stress.  
• the left boundary is comprised of rollers (no left 

and right displacement) and is traction free. 
• the bottom boundary is comprised of rollers (no 

up and down displacement) and is traction free. 
• Z direction is movement free for all nodes (plane 

strain). 
• the outer boundaries are free of fluid flow. 
• the borehole mud pressure is constant. 
• no fluid flow at time zero. 
• fluid flow starts at the first time-step. 
The model mimics plane strain 2-D problems and can 

be verified by corresponding 2-D plane strain analytical 
solutions. 
 
2.4 Model Verification 
 
2.4.1 Verification of visco-elastic FEM modeled 

borehole deformation 
 
The generalized Kelvin model (as shown in Figure 3) was 
used to verify the borehole deformations of stiff shale 
rocks. The analytical equations to calculate shorter 
diameter (urrA) and longer diameter (urrB) are described in 
equations 14 and 15: 

𝑢𝑟𝑟𝐴 =
𝑟
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× ((𝜐 − 1) × (3𝜎ℎ − 𝜎𝐻) + 𝑝𝑚)          [15] 

where urrA is the shorter diameter, urrB is the longer 

diameter, r is original borehole radius,  is Poisson’s ratio, 

H is the maximum horizontal stress, h is the minimum 
horizontal stress,  pm is borehole mud pressure, G(t) is the 
time-dependent shear relaxation modulus. 
 

 
Figure 3. Strain-time plot of a generalized Kelvin model 

(z1 and z2 are spring constants, η is dashpot viscosity, 0 is stress at time zero.) 

 
The FEM visco-elastic borehole deformation simulation 

using parameters listed in Table 1, and the analytical 
calculations through equations 14 and 15 using the same 
parameters, have been conducted. The magnitudes of 
deformations (or the displacements) at the borehole wall 
along the shorter axis direction, urrA, and magnitudes of the 
deformations at the borehole wall along the longer axis 
direction, urrB, are plotted in Figure 4. The figure shows that 
the analytical calculation verified the FEM visco-elastic 
borehole deformation simulation very well. 
 
Table 1. Characteristics of tested soils 
 

Parameter Value 

Young’s modulus, E (GPa) 3.2 

Poisson ratio,  0.2 

Minimum horizontal stress, h (MPa) 23 

Maximum horizontal stress, H (MPa) 43 

Rock solid bulk modulus, Ks (GPa) 39 

  Spring constant of Kelvin model, z1 (MPa) 3.2 

Spring constant of Kelvin model, z2 (MPa) 3.2 

Dashpot viscosity, η (Pa∙s) 1014 

Mud pressure, Pm (MPa) 14  

Assumed original borehole diameter, 2r (inch) 8.7  

 

 
 
Figure 4. Borehole deformations of FEM modeling and 
analytical calculations 
(Black lines represent FEM modeling results; small circles represent analytical solutions; the upper curve 
indicates the borehole wall displacements along the shorter axis; the lower curve indicates the borehole 

wall displacements along the longer axis.)  



 

 
2.4.2 Stress verification of the poro-elastic FEM model 
 
The radial displacements of circular openings due to pore 
pressure change is a function of the difference of the 
anisotropic stresses that are applied orthogonal to the 
openings and is difficult to be solved analytically (Carter 
and Booker, 1982; Detournay and Cheng, 1988).  

However, the radial effective stress ('rr) and the tangential 

effective stress (') around a circular opening (such as a 
borehole) can be calculated analytically according to the 
poro-elastic theory. The equations are described as 
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where r is the borehole radius, R is distance from borehole 

center, 'rr is the effective radial stress normal to the 

borehole wall, ' is the effective tangential stress around 

borehole, 'H is the effective far-field maximum horizontal 

stress, 'h is the effective far-field minimum horizontal 
stress, pm is the borehole mud pressure, pp is formation 

pore pressure, and  is the angle from maximum horizontal 
stress direction. 

Using the parameters listed in Table 2, both analytical 
calculations and FEM simulations were conducted. The 
scenario of zero mud pressures was demonstrated. The 
effective tangential stresses and the effective radial 
stresses around the borehole area at time zero are 
illustrated in Figures 5 and 6. 

 
Table 2. Input parameters for verifying poro-elastic FEM 
modeling 
 

Parameter Value 

Young’s modulus, E (GPa) 32 

Poisson ratio,   0.2 

 Biot coefficient,  0.54 

Minimum effective horizontal stress, h (MPa) 26 

Maximum effective horizontal stress, H (MPa) 43 

Rock solid bulk modulus, Ks (GPa) 39 

 

 

Dashpot viscosity, η (Pa∙s) 1014 

Pore pressure, Pp (MPa) 19.5 

Mud pressure, Pm (MPa) 0 

 Permeability, k (m2) 10-15 

Porosity,  0.07 

Fluid viscosity,  (cp) 10-3 

Assumed original borehole diameter, 2r (inch) 8.7 

  
 

 
Figure 5. Horizontal stresses near borehole along X 
direction 
 

In Figure 5, the solid line represents the FEM simulated 
radial effective stresses around the borehole at distances 
away from the borehole center along the X axis; the dashed 
line represents FEM simulated tangential effective stresses 
around borehole at distances away from the borehole 
center along the X axis. The stars are the calculated radial 
effective stresses around the borehole using the analytical 
equation 16; and, the small circles are the calculated 
tangential effective stresses around borehole using the 
analytical equation 17. The analytical solutions verify the 
FEM calculations very well. 

Similarly, in Figure 6, the radial and tangential stresses 
around borehole at distances away from borehole center 
along the Y direction, are very well verified by the analytical 
solutions. 

 
Figure 6. Horizontal stresses near borehole along Y 
direction 
 
2.5 Simulation Results of Poro-visco-elastic Borehole 

Beformation 
 
The FEM model for poro-visco-elastic borehole wall 
deformation has been run using the parameters listed in 
Table 3. The results of borehole wall radial deformations 
with time after drilling are shown in Figure 7. It is observed 
that the linear-elastic and poro-elastic displacements 
contribute very little to the time-dependent borehole 
deformations, whereas the visco-elastic property of the 
rock is the major cause of the borehole creep. The 
borehole wall creep in this example (with assumed rock 
visco-elastic properties and in-situ stresses) terminates at 
~2 hours (7000 seconds) after drilling. The final 
displacements are almost twice the initial linear elastic 
displacements (the instantaneous deformation) in both 
longer and shorter axis directions. 



 

Table 3. Input parameters for poro-visco-elastic FEM 
modeling 

 

Parameter Value 

Young’s modulus, 𝐸 (GPa) 32 

Poisson ratio, 𝜈 0.2 

Minimum horizontal stress, h (MPa) 26 

Maximum horizontal stress, H (MPa) 43 

Rock solid bulk modulus, Ks (GPa) 39 

 

 

Spring constant of Kelvin model, z1 (MPa) 32 

Spring constant of Kelvin model, z2 (MPa) 32 

Dashpot viscosity, η (Pa∙s) 1014 

Pore pressure, p0 (MPa) 19.5 

Mud pressure,  𝑝𝑚 (MPa) 14 

 Permeability, k (m2) 10-15 

Porosity,  0.07 

Fluid viscosity,  (cp) 10-3 

Assumed original borehole diameter, r (inch) 8.7 

  
 

 
Figure 7. Borehole wall creep at directions of longer and 
shorter axis 
 

Table 4 lists the magnitudes of the linear-elastic, poro-
elastic and poro-visco-elastic FEM simulations of borehole 
diameters with time. The borehole diameters remain 
unchanged with time in linear-elastic simulations. The 
poro-elastic simulation results of borehole wall deformation 
are just slightly (0.0034 inches) larger than the linear-
elastic simulation results at the beginning. It is also 
observed from the poro-elastic simulation results that 
although there is no further pressure variation on the 
borehole wall (except at the initial time step), the borehole 
wall deforms with time because of effective stresses 
change in the near wellbore area.  However, the magnitude 
of this change is only ~10-3 inches, and it makes sense that 
it is often neglected in field practice. 

 
Table 4. Borehole diameters variations with time 

 

Time 
(s) 

Linear elastic Poro-elastic  Poro-visco-elastic 

C13 
(inch) 

C24 
(inch) 

C13 
(inch) 

C24 
(inch) 

C13 
(inch) 

C24 
(inch) 

0 8.6954 8.6777 8.6920 8.6743 8.6920 8.6743 

0.1 8.6954 8.6777 8.6918 8.6741 8.6918 8.6741 

1 8.6954 8.6777 8.6915 8.6738 8.6915 8.6738 

10 8.6954 8.6777 8.6914 8.6737 8.6915 8.6738 

100 8.6954 8.6777 8.6914 8.6737 8.6913 8.6731 

1000 8.6954 8.6777 8.6914 8.6737 8.6902 8.6667 

10000 8.6954 8.6777 8.6914 8.6737 8.6871 8.6513 

 
3 IN-SITU STRESS INVERSION METHODOLOGY 
 
Theoretically, the longer and shorter diameters of an 
elliptical borehole can be determined through either 
analytical calculations or through FEM simulations as 
describe in the previous section, should Young’s modulus, 
Poisson’s ratio, original borehole size, borehole pressure, 
two horizontal stresses, relaxation moduli, and timing of 
rock creep be known. However, the inverse calculation of 
the in-situ stresses and the rock mechanical parameters 
from the measured borehole diameters might result in 
multiple solutions because the number of unknowns is 
larger than the number of solution equations.  

Therefore, optimization approaches for the inversion of 
in-situ stresses and the rock mechanical parameters from 
borehole deformation data are applied to find the best 
estimation. The objective functions of the optimization 
methods can be defined as: the length difference of the 
longer axis, the length difference of the shorter axis, and 
the difference between the ratio of the measured shorter 
axis length over the measured longer axis length and the 
ratio of the calculated shorter axis length over the 
calculated longer axis length.  

Generally, in multi-objective optimization problems, 
weighted-sum methods are adopted (Augusto et al., 2013; 
Kim and Weck, 2019).  If the objective functions for the in-
situ stresses and rock mechanical properties inversion 
from the borehole deformations data are composed of only 
the differences between the measured and calculated 
borehole diameters, these objective functions will have 
similar magnitudes that are in the range of 0-1 (typically in 
the magnitude of 10-2).  

However, if the magnitude of the functions are quite 
different (for example, the difference of Young’s modulus 
or the difference of minimum in-situ stress is several MPa 
or GPa, which is quite different from the objective function 
value of the borehole diameters), then a normalized 
weighted-sum multi-objective will be required, which is 
defined as: 

 

min ∑ 𝑤𝑖 × |(𝐷𝑖 − 𝐶𝑖)|
𝑛

𝑖=1
            [18] 

 
where n is the total number of objectives; Di is the 
calculated value of the ith objective, Ci is the measured 
value of the ith objective, and wi is the corresponding 
normalized weight for the ith objective.   

In this research, a MatlabTM function "fmincon", which 
stands for "find minimum of constrained nonlinear multi-
variable function", will be used to find the best fitness for 
the normalized weighted-sum multi-objective functions.  
The overall workflow for the poro-visco-elastic borehole 
deformation FEM modeling and the in-situ stresses 
inversion optimization is shown in Figure 8. The input of the 
known parameters and the constraints on the unknown 
parameters will be determined according to the availability 
of the parameters and the other information related to the 
research area.  
 



 

 
 
Figure 7. Flow chart of poro-visco-elastic modeling and 
time-dependent stress inversion 
 
4 SHALE CREEP EFFECTS ON IN-SITU STRESS 

INVERSION 
 
Rock creep behavior influences the measured borehole 
longer diameter (C13) and shorter diameter (C24), which will 
in turn, affect the determination of the in-situ stresses 
calculated from these measurements. In order to 
demonstrate the effects of time-dependent borehole 
deformation on the determination of in-situ stresses, visco-
elastic modeling based on the data listed in Table 5 was 
conducted following the workflow described in Figure 8. 
 
Table 5. Parameters for time-dependent borehole 
deformation 
 

Parameter Value 

Young’s modulus, E (GPa) 32 

Poisson ratio,  0.2 

Spring constant of Kelvin model, z1 (GPa) 32 

Spring constant of Kelvin model, z2 (GPa) 32 

Dashpot viscosity, η (Pa∙s) 1014 

Mud pressure, pm (MPa) 14 

 Minimum horizontal stress, h (MPa) 26 

Bit size, (inch) 8.5 

 

 

Measured longer diameter (inch) 8.6954  

 Measured shorter diameter (inch) 8.6777  

 
Range of original borehole size, 2r (inch) 8.7-8.8 

 
Range of maximum horizontal stress, H (MPa) 35-50 

Range of timing of after drilling (hour) 0-72 

 
A normalized weighted-sum multi-objective function is 

considered and described in the following form.  
 

Min 

0.2 ×
|(𝐶13−8.6954)|

0.1
+ 0.2 ×

|(𝐶24−8.6777)|

0.1
+ 0.2 ×

|(𝐶24/𝐶13−0.998)|

0.1
+ 0.4 ×

|(𝜎ℎ−26)|

10
           

[19] 
 
where C13 is the calculated longer axis length, C24 is the 

calculated shorter axis length, and h is the calculated 

minimum horizontal in-situ stress. MatlabTM function 
"fmincon" was used to find the best fitness.  The calculation 
results are shown in Table 6.  
 
Table 6. Results from normalized weighted-sum multi-
objective function 
 

Initial 
input 

Objective 
Function 

C13 
inch 

C24 
inch 

H 
MP
a 

h 
MP

a 

Origin
al hole 

inch 

Timing 
hour 

1 7.11E-05 8.6954 8.6777 36 26 8.7063 0.76 

2 3.57E-03 8.6970 8.6777 35 26 8.7102 36.00 

3 3.57E-03 8.6970 8.6777 35 26 8.7102 49.98 

4 0.00354 8.6967 8.6775 35 26 8.7099 36.51 

 
Among the four initial inputs, the first input has the 

lowest objective function value, which gives the estimated 
maximum horizontal stress of 36 MPa based on the 8.71 
original borehole size and the measurement of calipers are 
around 45 minutes after drilling.  Table 7 lists the inverted 
maximum horizontal stress from the linear-elastic model 
and the visco-elastic model. It is observed that the visco-
elastic model estimates a substantially smaller maximum 
in-situ stress than the linear-elastic calculations. 

 
Table 7. Shale creep effects on the maximum horizontal 
stress inversion 

 

H 
(elastic model) 

MPa 

H 
(visco-elastic model) 

Mpa 

Time 
(after drilling) 

hour 

43 36 0.76 

 
5 CREEP EFFECTS ON YOUNG’S MODULUS 

ESTIMATION 
 
The shale creep effects on the determination of Young’s 
modulus was demonstrated using data from a well (00-06-
26-064-01W6-0) that was drilled through the Duvernay 
Formation in Western Canada Sedimentation Basin. Non-
breakout sections were identified around depth of 3876 
meters. Borehole deformation from the four-arm caliper 
logging data is listed in Table 8. The ranges for the 
unknown parameters are listed in Table 9.   
 
Table 8. Available wells suitable for in-situ stress 
determination 
 

Depth 
(m) 

Bit 
size 

(inch) 

Shorter 
Diameter (C24) 

(inch) 

Longer 
Diameter (C13) 

(inch) 

3876 6 6.0476 6.1081 

 
Table 9. Ranges of unknown parameters for calculation 
 

2r E h H 

inch GPa MPa MPa 

6.05-6.60 1-60 69-93 93-156 

 
Table 10 shows the linear-elastic modeling results. The 

estimated minimum horizontal stress gradient is 21 kPa/m. 
It agrees well with the reported far-field minimum horizontal 



 

principal stress gradient in the Duvernay Formation near 
Fox Creek, Alberta with highest and lowest values of 22 
and 17 kPa/m (Shen et al., 2018). There is no maximum 
horizontal stress magnitude reported for the area. 

 
Table 10. Linear-elastic modeling results 
 

Bit 
inch 

Hole 
inch 

E 
GPa 

σh 
MPa 

σH 
MPa 

h gradient 

kPa/m 

6 6.12 22 80 137 21 

 
The estimated Young’s modulus from the linear-elastic 

model is 22 GPa. In order to demonstrate the creep effects 
on the estimation of the Young’s modulus, the workflow 
was repeated but using a visco-elastic model under the 
same maximum and minimum horizontal stresses and the 
original borehole size. The calculated Young’s modulus is 
45 GPa at 24 hours after drilling (Table 11). Young's 
modulus calculated from the visco-elastic model is much 
larger than the linear elastic calculations under the same 
in-situ stresses and the original borehole sizes.  

  
Table 11. Shale creep effects on the calculation of  Young's 
modulus 
 

E 
(elastic model) 

GPa 

E 
(visco-elastic model) 

GPa 

Timing 
(after drilling) 

hour 

22 45 24 

 
6 CONCLUSIONS 
 
An integrated workflow to quantify the time-dependent 
borehole deformation in shale rocks and to inverse the in-
situ stresses and geomechanical parameters were 
developed by combining a poro-visco-elastic FEM 
simulation and an optimization approach.  

It is observed that the time-dependent borehole 
deformation is mainly influenced by the visco-elastic 
properties of the rock; the pore pressure diffusion effects 
have a negligible influence on the time-dependent borehole 
deformations. 

For visco-elastic rocks, from a geomechanics point of 
view, the inverted in-situ stress is substantially smaller than 
that of linear-elastic calculations; the estimate Young’s 
modulus is much higher than that calculated from linear-
elastic models. 
 
REFERENCES 
 
Augusto, O., Fouad, B. and Caro, S. (2013). A new method 

for decision making in multi-objective optimization 
problems. Sociedade Brasileira de Pesquisa 
Operacional 32(3): 331-369. 

Bonner, S., Clark, B., Holenka, J., Voisin, B., Dusang, J., 
Hansen, R., White, J. and Walsgrove, T. (1992).  
Logging while drilling: a three-year perspective. Oilfield 
Review 4(3):4-21. 

Carter, J. P. and Booker, J.R. (1982). Elastic consolidation 
around a deep circular tunnel. International Journal of 
Solids and Structures 18(12): 1059-1074. 

Chang, C., Zoback, M. D. and Khaksar, A. (2006). 
Empirical relations between rock strength and physical 
properties in sedimentary rocks. Journal of Petroleum 
Science and Engineering 51(3-4): 223–237.  

Desroches, J., and Kurkjian, A. L. (1999). Applications of 
wireline stress measurements. SPE Reservoir 
Evaluation & Engineering 2(5):451-461.  

Detournay, E. and Cheng, A. H-D. (1988). Poroelastic 
response of a borehole in a non-hydrostatic stress field. 
International Journal of Rock Mechanics and Mining 
Science & Geomechanics Abstracts 25: 171-182. 

Han, H. X., Yin, S., and Aadnoy, B. S. (2018). Impact of 
elliptical borehole on in-situ stress estimation from leak-
off test data. Petroleum Science 15(4): 794-800. 

Han, H. X., and Yin, S. (2018a), Determination of in-situ 
stress and geomechanical properties from borehole 
deformation. Energy 11(1): 131. 

Han, H. X., and Yin, S. (2018b), In-situ stress inversion in 
Liard Basin, Canada, from caliper logs. Petroleum, In 
press.  

Kim, Y. I., and Weck, O. (2019). Adaptive weighted sum 
method for multi-objective optimization. Structural and 
Multidisciplinary Optimization 31:105-116. 

Najibi, A. R., Ghafoori, M., Lashkaripour, G. R., and Asef, 
M. R. (2017). Reservoir geomechanical modeling: in-
situ stress, pore pressure, and mud design. Journal of 
Petroleum Science and Engineering 151: 31–39. 

Shen, L., Schmitt, D.R., and Haug, K. (2018). 
Measurements of the states of in-situ stress for the 
Duvernay Formation near Fox Creek, West-Central 
Alberta. AER/AGS Report 97. Alberta Energy 
Regulators, Calgary, Alberta, Canada. 

Sinha, B. K., Wang, J., Kisra, S., Li, J., Pistre, V., Bratton, 
T., Sanders, M., and Jun, C., (2008).  Estimation of 
formation stresses using borehole sonic data. Paper 
SPWLA-2008-F, presented at 49th Annual Logging 
Symposium, Austin, Texas, USA. 

Zhang, H., Yin, S., and Aadnoy, B. S. (2018a). Poroelastic 
modeling of borehole breakouts for in-situ stress 
determination by Finite Element Method. Journal of 
Petroleum Science and Engineering 162: 674-684. 

Zhang, H., Yin, S., and Aadnoy, B. S. (2018b). Finite‐
element modeling of borehole breakouts for in situ 
stress determination. International Journal of 
Geomechanics 18(12): 04018174. 

Zhang, H., Yin, S., and Aadnoy, B. S. (2019). Numerical 
investigation of the impacts of borehole breakouts on 
breakdown pressure. Energies (12): 888. 

Zhang, H., and Yin, S. (2019). Inference of in situ stress 
from thermoporoelastic borehole breakouts based on 
artificial neural network. International Journal for 
Numerical and Analytical Methods in Geomechanics 
43(16):1-19. 

Zhang, H., and Yin, S. 2020. Poroelastoplastic borehole 
modeling by tangent stiffness matrix method. 
International Journal of Geomechanics 20(3): 
04020010. 

 


