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ABSTRACT 
A new rigorous and adjustable, yet quite handy, continuum foundation model recently proposed by Worku, the senior 
author, without neglecting any stress, strain, or deformation component in the subgrade is utilized to analyze circular plates 
on elastic foundations. The governing differential equations for the case of axisymmetric loading are solved for two variants 
of the model: Winkler-type and Pasternak-type models. Closed form solutions are presented for different loading conditions 
on small and large circular plates. The finite-element-based software PLAXIS 2D is used to calibrate the presented model 
variants by seeking agreement with respect to the maximum deflection. Numerical examples are solved to demonstrate 
the performance of the models. The outputs show that the proposed models are suitable to conduct analyses of plates and 
beams efficiently. 
 
RÉSUMÉ 
Un nouveau modèle de fondation de continuum rigoureux et ajustable, mais assez pratique, récemment proposé par 
Worku, l’auteur principal, sans négliger aucune contrainte, déformation ou composante de déformation dans le sol de 
fondation est utilisé pour analyser les plaques circulaires sur les fondations élastiques. Les équations différentielles 
régissant le cas du chargement axisymétrique sont résolues pour deux variantes du modèle: les modèles de type Winkler 
et Pasternak. Des solutions sous forme fermée sont présentées pour différentes conditions de chargement sur de petites 
et grandes plaques circulaires. Le logiciel à éléments finis PLAXIS 2D est utilisé pour calibrer les variantes de modèle 
présentées en recherchant un accord en ce qui concerne la déflexion maximale. Des exemples numériques sont résolus 
pour démontrer les performances des modèles. Les résultats montrent que les modèles proposés conviennent pour 
effectuer efficacement des analyses de plaques et de poutres. 
 
 
  
1 INTRODUCTION  
 
Regular use of plates in civil and mechanical engineering 
practice initiated the development of analytical methods to 
analyze foundations interacting with the underlying soil. 
The earliest soil-structure-interaction (SSI) model devised 
for this purpose is Winkler’s model (Winkler, 1867) that 
assumes a simple linear relationship between the contact 
pressure and the displacement at a point. This rudimentary 
model survived the test of time and technological 
advancement even though it is understood that the model 
is highly simplistic and far from representing the reality. 
One of its obvious shortcomings is the omission of the soil 
shear in the SSI. Despite this fact, structural analysis 
software still use Winkler’s model to account for SSI effects 
(Worku, 2013).  

Efforts to improve on the known drawbacks of Winkler’s 
model have been underway following two approaches: 
elastic continuum and mechanical. The elastic continuum 
approach idealizes the subgrade as an elastic layer of 
thickness H overlying a rigid base characterized by the 
elastic parameters. However, almost all models are based 
on certain simplifying assumptions regarding the subgrade 
stresses, displacements or a combination of these to 
simplify the rather involved mathematical relationships 
Horvath (1983, 2002). For this reason, it makes sense to 
refer to these models as simplified continuum models. 

The mechanical modelling approach, on the other 
hand, idealizes the subgrade as an assemblage of few 
mechanical elements such as springs, plates in pure shear 
or pure bending, stretched membranes and similar others. 
To this effect, improved models introduced additional 
mechanical elements to interconnect the springs and 
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thereby overcome the inherent lack of shear interaction 
among the individual springs of Winkler’s model 
(Filonenko-Borodich, 1950; Hetenyi, 1950; Pasternak, 
1954; Kerr, 1964; Winkler, 1867).  

Synthesis of the two approaches has the advantage to 
quantify the mechanical model parameters in terms of the 
known parameters of the continuum model while enabling 
the incorporation of the mechanical subgrade models in 
structural models.  

Recently, the senior author proposed a generalized 
continuum subgrade model, unlike in previous continuum 
models, without neglecting any stress, strain and 
displacement components (Worku, 2010). This paper 
demonstrates the convenience and effectiveness of this 
model by analyzing circular plates of large and small radii 
under different loading conditions. It presents closed-form 
subgrade model parameters for circular plates adjusted by 
means of FEM models. Proposed values of the single 
adjustment factor in the model parameters is also provided 
for axisymmetric loading. 

 
 

2 FORMULATION OF GOVERNING EQUATIONS 
 
Equilibrium requirement for linear bending of isotropic, thin 
and solid circular plates with axisymmetric conditions on an 
elastic foundation results in the differential equation (DE) of 
 
 

( ) ( )oD d d 1 d dw
r r + p r = q r

r dr dr r dr dr

   
      

                                [1]  

 

Where ( )ow r = vertical plate deflection; ( )q r = 

distributed vertical load; ( )p r  = reaction of the elastic 

foundation and, ( )3 2
p p pD = E h 12 1-v , flexural rigidity of the 

plate in which pE = modulus of elasticity of the circular plate 

and ph = thickness of the plate (Reddy, 2007; Szilard, 

2004).  
The final form of this DE is obtained after introducing 

the respective mathematical models as provided below.  
 
2.1 Single-Parameter (Winkler’s) Subgrade Model 
 
In this model, the plate-soil interaction is represented by 
the highly simplified linear algebraic relationship between 
the contact pressure and the vertical deflection as 
 
 

w op(r) = k w (r)                                                                   [2] 

 
 

Where 
wk = Winkler’s coefficient of subgrade reaction. 

 
 

 
Figure 1. A Circular plate on Winkler’s mechanical mode  
 
 

Substituting Eq. 2 into equation 1, the governing DE 
takes the form 
 
 

  ( ) ( )o
w o

dwD d d 1 d
r r + k w r = q r

r dr dr r dr dr

  
    

                [3] 

 
 
2.2 Two-Parameter (Pasternak’s) Subgrade Model 
 
A pure shear layer on top of Winkler’s model is introduced 
to interconnect the springs at their heads thereby improving 
the shear interaction. 
 
 

 
Figure 2. A Circular plate on Pasternak’s mechanical model 
 
 
The reaction of the elastic foundation is given by  
 
 

2

op p op(r) = k w (r) - G w (r)                                                  [4]  

 
 



 

Where 2
 = laplacian operator;

pk = spring coefficient 

per unit area;
pG = coefficient of the shear element in 

Pasternak’s model with the dimension of force per unit 
length (Pasternak, 1954).  

Substituting Eq. 4 into equation 1, the governing DE 
becomes 

 
 

  ( )

( )

o
p o

p o

dwD d d 1 d
r r + k w r

r dr dr r dr dr

G dwd
- r = q r

r dr dr

  
    

 
 
 

                            [5] 

 
 
3 ANALYTICAL SOLUTION 
 
3.1 Plates on a Winkler Subgrade Model 
 
The circular plate is assumed to be subjected to a 
symmetrically distributed loading with respect to the center. 
The homogeneous form of Eq. 3 may be rewritten as 
 
 

22

2 2

o w od w dw k wd 1 d 1o
+ + + = 0

dr r dr dr r dr D

  
  
  

                     [6] 

 
 

Eq. 6 reduces to 
 
 

2 4

r o oΔ w + w = 0                                                             [7] 

 
 

Where 4
w= k D is the characteristic size of the 

circular plate-soil system (Hetenyi, 1979) that relates the 

subgrade and plate rigidities;
dr

d

r

1

dr

d
rΔ 2

2

+= is the 

differential operator in polar coordinate for axisymmetric 
conditions.  

 Rigorous solutions of a DE of this type can be derived 
in form of power series, which may be expressed in terms 
of Bessel functions (Boas, 1966; Hildebrand, 1962). 

The general solution of Eq. 7 is given by 
 
 

( ) ( ) ( ) ( )o 1 1 2 2 3 3 4 4w = A z r + A z r + A z r + A z r         [8] 

 
 

Where
1A to

4A  are open constants and, ( )1z r , 

( )
2

z r , ( )3z r and ( )
4

z r  are four independent solutions 

of the governing equation with the argument r . These 

functions are infinite series solutions of modified Bessel 
equations.  

Eq. 8 can be used to solve the problem of different 
loading types by introducing the pertinent boundary 
conditions to solve the constants. 

 
3.2 Plates on a Pasternak Subgrade Model 
 
Following similar steps as above, the homogeneous form 
of Eq. 5 can be expressed as 
 
 

( ) ( ) ( )4 2p p

o o or r

G k
Δ w r - Δ w r + w r = 0

D D
                        [9] 

 
 
Where, the following substitutions are made: 
 
 

2 4
p p1 l = ;G D = 2T l ;k D = 1 l                                    [10a] 

 
 

In which  
 
 

2

p pT = G 4k D                                                             [10b] 

 
 

Equations of the form of Eq. 9 have a characteristic 
polynomial equation of the same order, the roots of which 
give the argument of the modified Bessel functions 
(Spiegel, 1971). This polynomial has the form: 
 
 

4 2

2 4

T 1
d - 2 d + = 0

l l
                                                      [11a] 

 
 

The roots are given by 
 
 

2

1,2,3,4

1
d = ± T ± T - 1

l
                                       [11b] 

 
 
 There are three possible solutions depending on 

whether T > 1,T = 1 or T < 1. Of practical significance is only 

the case of T > 1. The solution for this case becomes  
 
 

( ) ( ) ( ) ( )

( ) ( ) ( )

1

2

o 1 o 2 o

3 o 4 o

w r = A J dr / l + A H dr / l

+A J dr / l + A H dr / l

                         [12] 

 
 



 

Where 
1A  to 

4A  are open constants, ( )J dr / lo & 

( )J dr lo  and
( ) ( )1 2

o oH & H are Bessel functions of first and 

third kind resp. and, d and d  are introduced constants for 

the root expressed as 
 
 

  
  

   

  
  

   

2
2

2
2

p p p

p p

G G 4kl
d = - + -

2 D D D

GG 4kl p
d = - - -

2 D D D

                                     [13] 

 
                                    
4 NUMERICAL ANALYSIS AND CALIBRATION 
 
As stated earlier, the synthesis of continuum and 
mechanical subgrade models of the same order enables 
one to express the unknown mechanical model parameters 
in terms of the elastic constants of the soil layer and its 
thickness. Accordingly, the relations are obtained from the 
two models proposed by Worku (2013, 2014) as given 
below. 

Winkler’s model parameter: 
 
 

( )s

s
w

E
k =

1- 0.4v H
                                                          [14] 

 
 

Pasternak’s model parameters:  
 
 

( )
( )s

s s
p p

0.4v + 0.67 E
k = , G = 1.36v + 2.28 GH

H
            [15] 

 
 

Where sE = modulus of elasticity of the soil; sv = 

Poisson’s ratio of the soil; H = thickness of the soil layer; G

= shear modulus of the elastic medium. 
 

4.1 Identification of the important solution case for 
Pasternak’s subgrade model 

 
As pointed above, for Pasternak’s subgrade model the 
case of T > 1 is the only case that has practical significance. 
This observation can be made by plotting T in Eq. 10 
against a dimensionless stiffness factor or relative rigidity 

of the soil-plate system, rk , as suggested by Rajapakse 

and Selvadurai (1991). 
 
 

 

 
 
 

3

p

p

r

h
E

a
K =

G
                                                        [16] 

 
 

Where a = radius of the plate; pE  = modulus of elasticity 

of the circular plate and ph = thickness of the plate. 

A range of soil properties that is wide enough to capture 
all possible cases is considered to establish the trend of T 
with kr. These are given in Table 1 along with the plate 
properties. 
 
 
Table 1. Soil and Plate Properties (Bowles, 1997; Das, 
2007) 
 

Soil parameters   Plate Property 

 
s

E (KN/m2) 
 µs Plate type     RC  

Soft Clay 15,000 0.4 
pE (Gpa)    25 

Medium Stiff Clay 30,000 0.3 
pv  

   0.2 

Stiff Clay 80,000 0.25 
ph (m) 

   0.15 

Loose sand 20,000 0.3 𝜙 (m)    20 

Medium Dense 

Sand 

40,000 0.25      

Dense Sand 81,000 0.2     

 
 

The plot of T against rk for various values of stratum 

thickness normalized with respect to the radius of the plate 
is shown in Figure 3. It shows that T is almost always larger 
than one, exceptions being very small rigid plates on thin 
very soft soils. The odds for such a case to occur in practice 
are rare. Thus, the case T > 1 alone is pursued further. 
 
 



 

Figure 3. Effects of 
rk and H  on T   

 
 
4.2 Determination of the Calibration Factor  
 
All continuum models based on an elastic stratum are 
sensitive to the stratum thickness, H. This happens 
regardless of the degree of rigor of the models including 
the proposed Winkler-type and Pasternak-type model 
variants of Worku (2013, 2014). In order to overcome this 
problem, H is replaced by B , where B is the foundation 

characteristic width and 𝜒 is used as a calibration factor to 
adjust selected responses against measured data, if 
available, or against rigorous numerical models. Plaxis 2D 
is used in this work for this purpose.  

To undertake the calibration, an optimum mesh size is 
obtained first. After fixing the mesh size follows calibration 
of both models and a selected soil type is taken for various 

relative thickness of stratum,  H= , where ϕ is the 

diameter of the circular plate. The maximum deflection in 
mm is plotted against the dimensionless calibration factor, 
 as shown in Figures 4 and 5, where only typical graphs 

are presented. The value of 𝜒 that gives the same value as 
the asymptotic value of the PLAXIS plot is identified. This 
is repeated for a range of cases with corresponding values 
of . The plot of 𝜒 obtained in this manner against a 

sufficient range of is shown in Figures 6 and 7 for the two 

proposed models. 
 
 

Figure 4. Determination of  using central concentrated 
load and uniformly distributed load for large circular plates. 
 
 

 

Figure 5. Determination of   using central concentrated 
load and circumferential edge load for small circular plates. 

 
 

 
Figure 6. Calibration of Winkler’s model for a central 
concentrated loading on large circular plates on soft clay. 
 
 



 

 
Figure 7. Calibration of Pasternak’s model for a central 
concentrated loading on large circular plates on soft clay. 
 
 

Though not presented here, similar plots for a 
distributed and circumferential edge load on diverse soil 
types were obtained. After observing all results, the 
recommended   values for large and small circular plates 

on weak to strong soils are summarized in Tables 2 and 3. 
 
 
Table 1. Recommended values of  for large circular plates 

 

Soil Type Central Concentrated 
Load 

Uniformly Distributed 
Load 

 Winkler’s  

Model  

( )w  

Pasternak’
s  

Model 

( )p
  

Winkler’
s  

Model 

( )w  

Pasternak’
s  

Model 

( )p
 

 

Weak soils 5.03 0.68 5.76 1.21 

All other 

soils 

5.0 0.63 5.71 1.15 

 
 
Table 3. Recommended values of  for small circular plates 

 

Soil Type Central Concentrated 
Load 

Circumferential 
Edge Load 

 Winkler’s  

Model 

( )w  

Pasternak’
s  

Model 

( )p
 

Winkler’
s  

Model 

( )w             

Pasternak’
s  

Model 

( )p
 

 

Weak soils 6.01 2.37 6.47 2.36 

All other 

soils 

5.98 2.35 6.40 2.24 

 
 

Hence, for an actual stratum with  H , it is 

recommended to take the calibration factors given in 
Tables 2 and 3. If  H , the actual depth may be taken 

without modification. 
 

4.3 Calibration of Model Parameters 
 
The sensitivity of the deflection to the layer thickness can 
be avoided by introducing the following relation  
 
 

H =                                                                             [17] 

 
 

Where  = calibration factor established above for both 

models. Inserting Eq. 17 into equation 14 and 15, the 
calibrated model parameter for Winkler’s subgrade model 
becomes 
 
 

 

s
w

w

E
k =

(1- 0.4v)
                                                         [18] 

                                                               
 

Similarly, for Pasternak’s subgrade model, the 
parameters take the form 
 
 

p

p

,  

 

s
p p

(0.4v + 0.67)E
k = G = (1.36v + 2.28)G                 [19] 

 
 
4.4 Performance of the Calibrated Models 
 
The calibrated Winkler-type and Pasternak-type models 
are compared with PLAXIS 2D results for selected loading 
conditions and for circular plates of large and small radii. 
The plate is classified as large, intermediate and small 
adopting the classification of beams proposed by Hetenyi 
(1979) with some adjustments.  

i. Small circular plates:  < / 4   

ii. Intermediate circular plates:   / 4 < <   

iii. Large circular plates:  >   

 Circular plates which satisfy the requirements of 
intermediate plates can be classified and treated as small 
plates according to Selvadurai (1979). 

 
4.4.1 Large Plates 
 
Numerical examples are solved for large plates subjected 
to loads concentrated at the center and to uniformly 
distributed loading. The deflection curves are presented in 
Figures 11 to 14 for the soil parameters presented in Table 

1, plate properties in Table 4 and recommended   values 
in Table 2. Similarly, deflection plots for both loading 
conditions on diverse soils types were obtained though not 
presented here. In advance to these plots, for the same soil 
and plate data sets, typical Plaxis outputs of a circular plate 
subjected to a central concentrated load are presented in 
Figures 8 to 10. While modelling of the circular plate in 
Plaxis 2D, linear elastic and axisymmetric material models 
are assumed for the soil and plate respectively.  
 



 

 
Table 4.  Calculation cases for large plates 
 

Plate Dimension  
and Properties 

Soil 
Thickness  
(H) 

Loading 

Modulus of 

elasticity,
p

E   

25 

(GPa) 

120(m) Vertical 
concentrated,
p    

100 

(KN) 

Poisson’s 

ratio, pv  

0.2 Uniformly 
distributed, 
q  

  40 

  (KN/m2) 

Thickness, 

p
h   

0.15 Radius of 
loaded 
region, a 

  5(m) 

Plate 

diameter,   

20(m)   

 
 

Figure 8. Geometry Model 
 
 

 
Figure 9. Deformed mesh of a circular plate on stiff clay 
subjected to central concentrated load 
 
 

 
Figure 10. Contour line representation of the effective 
mean stress for a stiff clay soil 
 
 

 
Figure 11. Deflection of a large circular plate on soft clay 
subjected to central concentrated load 
 
 

 
Figure 12. Deflection of a large circular plate on stiff 
clay/dense sand subjected to central concentrated load 
 
 



 

 
Figure 13. Deflection of a large circular plate on soft clay 
subjected to uniformly distributed load 
 
 

 
Figure 14. Deflection of a large circular plate on stiff 
clay/dense sand subjected to uniformly distributed load 
 
 

Figures 11 to 14 show that the use of the recommended 
calibration factors give maximum deflections in very good 
agreement with that of the FE result for both models. A 
relatively visible discrepancy is observed in weak soils 
when Winkler’s model is used. However, this is of little 
practical significance indicating that even Winkler’s model 
can yield satisfactory results if properly calibrated. 
Pasternak’s model performs even much better over the 
whole area of the plates as evidenced by a wider range of 
analysis results not reported here.  
 
4.4.2 Small Plates 
 
Similarly, small plates subjected to a concentrated load at 
center and a circumferential load at the edge are analyzed 
with the soil parameters and the recommended  values 

presented in Tables 1 and 3. The plate size and loadings 
are given in Table 5.  Deflection curves on weak and strong 
soils are given in Figure 15 to 18.  
 
 
 

Table 5.  Calculation cases for small plates 
 

Plate Dimension  
and Properties 

Soil 
Thickness  
(H) 

Loading 

Modulus of 

elasticity, 
p

E  

25 

(GPa) 

21(m) Vertical 
concentra

ted, 
o

p  

100 

(KN) 

Poisson’s 

ratio, 
p

v  

0.2 Edge 

load, 
o

q  

100 

(KN/m) 

 

Thickness, 

p
h  

0.15   

Plate 

diameter,   

3(m)   

 
 

 
Figure 15. Deflection of a small circular plate on soft clay 
subjected to central concentrated load 
 

 
Figure 16. Deflection of a small circular plate on stiff 
clay/dense sand subjected to central concentrated load 
 
 



 

 
Figure 17. Deflection of a small circular plate on soft clay 
subjected to circumferential edge load 
 
 

 
Figure 18. Deflection of a small circular plate on stiff 
clay/dense sand subjected to circumferential edge load 
 
 

All plots show very good agreements of both models 
with the PLAXIS 2D, even though the maximum deflections 
are slightly underestimated by Winkler’s model in the case 
of the centrally loaded plates. 

The deviations in the internal moments and shear 
forces, though not presented here, are generally negligible. 

 
 

5 CONCLUSION  
 
The potential use of the generalized continuum-based 
subgrade model proposed by the senior author in the 
analysis of axisymmetric circular plates on an elastic 
foundation is demonstrated. The inherent sensitivity of the 
both model variants to the layer thickness has been 
avoided by calibrating them with respect to the thickness 
itself normalized with respect to the plate diameter. The 
small discrepancies observed with respect to the FE results 
are of little practical significance, especially if one notes 
that the calibration is based on matching only the maximum 
deflection. Treating a small plate with a circumferential 
edge loading using the respective calibration factors has 

shown similar trend of the results as in the other loading 
conditions.  

Values of the calibration factor obtained for Winkler’s 
model is much larger than that for Pasternak’s model. This 
is indicative of the significant contribution of the soil shear 
in the plate response. It also shows that the use of 
unadjusted model parameters can lead to flawed results. 
This is particularly important when one recalls that there is 
a plethora of relationships for Winkler’s subgrade modulus 
in the literature.  

The study shows that the calibrated Pasternak model 
represents the real physical problem much better than the 
calibrated Winkler model for it directly accounts for the 
shear interaction missing in Winkler’s model. Hence, the 
study shows that the proposed rigorous Kerr-Equivalent 
Pasternak model is attractive and more appropriate for the 
analysis of plates and beams on elastic foundations. 
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