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ABSTRACT 
The allowable settlement of a foundation must account for maximum deformations at both serviceability limit states (SLS) 
and ultimate limit states (ULS) of the supported structure. The resulting design of foundations typically proceeds by limiting 
the total settlement of individual foundations and by doing so, hopefully restricting the differential settlement between pairs 
of foundations. In fact, it is often the differential settlement which is of more importance to the performance of the supported 
structure. Unfortunately, due to the random nature of the supporting ground, the magnitude of differential settlement is also 
random, and is typically much more difficult to characterize than is the total settlement of individual foundations. For a 
group of four foundations arranged in a square pattern, this paper investigates the distribution of the pair-wise maximum 
differential settlement as a function of the degree of spatial variability and correlation. In particular, the effect of increasing 
correlation length between elasticity of the ground, and loads applied to the foundations, on the maximum differential 
settlement distribution is investigated. The end goal is to develop probabilistic design requirements which allow for 
acceptable target reliabilities against excessive differential settlement. 
 
 
RÉSUMÉ 
Le tassement admissible d'une fondation doit tenir compte des déformations maximales aux états limites de service (SLS) 
et ultimes (ULS) de la structure supportée. La conception des fondations qui en résulte procède généralement en limitant 
le tassement total des fondations individuelles et, ce faisant, en limitant, espérons-le, le tassement différentiel entre les 
paires de fondations. En fait, c'est souvent le règlement différentiel qui est plus important pour la performance de la 
structure supportée. Malheureusement, en raison de la nature aléatoire du sol de support, l'amplitude du tassement 
différentiel est également aléatoire et est généralement beaucoup plus difficile à caractériser que le tassement total des 
fondations individuelles. Pour un groupe de quatre fondations disposées en carré, cet article étudie la distribution du 
tassement différentiel maximum par paire en fonction du degré de variabilité spatiale et de corrélation. En particulier, l'effet 
de l'augmentation de la longueur de corrélation entre les élasticité du sol et les charges appliquées aux fondations sur la 
distribution de tassement différentielle maximale est étudié. L'objectif final est d'élaborer des exigences de conception 
probabilistes qui permettent des fiabilités cibles acceptables contre un tassement différentiel excessif. 
 
 
 
1 INTRODUCTION 
 
Whenever multiple foundations are used to support a 
structure, the potential for differential settlement between 
the foundations often governs the foundation design. In 
practice, the maximum differential settlement between 
pairs of foundations is usually unknown, and it is the total 
settlement of individual foundations that is used in the 
design process. Generally speaking, the maximum 
differential settlement is usually assumed to be some 
fraction, e.g. one half, of the total settlement of individual 
foundations. However, it would be beneficial to 
characterize the distribution of maximum differential 
settlement for use in design.  

The probabilistic analysis of foundation 
settlements has received some attention over the years. 

Zeitoun and Baker (1992) examined differential 
settlements between pairs of foundations to the problem 
of two beams acting on three supports. Roberts and Misra 
(2009) developed a reliability-based design approach for 
deep foundations which considered differential settlement 
between a pair of deep foundations. Naghibi et. al (2016) 
also investigated the differential settlement between a 
pair of foundations and developed a distribution of the 
differential settlement which was validated by Monte-
Carlo simulation of a pair of foundations in a spatially 
random soil. In the current paper, the approach is 
extended to a group of four foundations, as depicted in 
Figure 1, and the distribution of the maximum differential 
settlement between the foundations is studied. The 
foundation group is assumed to be placed on a spatially 
variable linearly elastic soil and the loads applied to each 



 

foundation are random and cross-correlated to some 
extent. Although soil deformations are well-known to be 
non-linear, the extension of this study to a non-linear 
elastic-plastic soil is a much more ambitious numerical 
problem, especially when random fields are included. 
Such an analysis is left for future study. Note that the 
effective properties of the elastic soil will be assumed 
here to be the linearized response of the soil in the region 
of the mean soil displacements. 

Using Monte Carlo simulation, realizations of the 
effective elastic moduli (expressed as a spring constant) 
under each foundation along with the applied load are used 
to predict the settlement of each foundation, from which the 
maximum differential settlement is extracted. Each 
simulation involves the generation of spring constant and 
load values that are cross-correlated according to 
separation distance between foundations. 

 

 
 

Figure 1: plan view of foundation locations 
 

The paper is organized as follows: In Section 2, a 
random field model is presented for a system of pn  

foundations. The corresponding simulation model is 
described in Section 3. The methodology is discussed in 
Section 4 and the results are presented in Section 5. An 
example of how the results of this paper can be used to 
estimate probabilities of excessive differential settlement is 
given in Section 6. Finally, conclusions and 
suggestions for future work are in Section 7. 

 
 

2 RANDOM FIELD MODEL 
 
A random field ( )X x


 is a collection of random variables 

1 21 2( ), ( ),...X X x X X x 
 

, whose values are associated 

with each spatial location x


. Values in a random field are 

usually spatially correlated, and the spatial dependence in 
a field is characterized by the field correlation structure, 
which is commonly specified through a correlation function 
parameterized by correlation length,  . In this paper, an 
isotropic exponentially decaying Markov correlation 
function is used, defined by 
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where ij is the distance between any two points, iX  and 

jX , in the field, and is the correlation length (Fenton and 

Griffiths, 2008). 
A lognormal distribution is commonly used for modeling 

engineering properties due to its non-negative nature and 
its simple relationship with the normal distribution. In 
particular, a lognormal random field can be easily produced 
through a simple transformation of a Gaussian random 
field. In general, if X  is lognormal with mean and standard 
deviation X  and X , then ln X is normal with parameters 
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where /X X Xv    is the coefficient of variation of X . In 

this research, both load, F , and  spring constant, K , are 
assumed to be lognormally distributed random variables. 
This implies that ln F  and ln K are both normally 
distributed with parameters given by Eq. 2 (where the 
subscript X is suitably replaced by either K  or F ). 
Furthermore, both load and spring constant are spatially 
varying random variables with an additional parameter 
being the correlation length, ln F  or ln K respectively, 

replacing   in Eq. 1. The spring constant K  would 
normally be derived from the effective elastic modulus of 
the soil taking into account the geometry of the foundation 
and the thickness of the supporting foundation layer (see, 
e.g., Poulos and Davis, 1974, and Fenton and Griffiths, 
2005). 
 
 
3 SIMULATION MODEL  
 
Various random field generation algorithms exist of which 
the Covariance Matrix Decomposition (CMD, see e.g., 
Fenton and Griffiths, 2008) method is employed in this 
research to provide realizations of the random load and 
spring constant fields. CMD is an exact method of 
producing realizations of a discrete random field (i.e., at the 
foundation locations) which requires the mean, ln X , and 

covariance matrix, C


, having elements ln lni jij ij X XC    , 

, 1, 2,..., pi j n . The elements of C


 are the covariances 

between any pair of points in the field separated by lag 

distance i j , where  ij ij    (see Eq. 1). For a 



 

stationary random field, having spatially constant variance, 
the covariance matrix C


 is composed of the elements 
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Since C


 is a positive definite matrix, then a properly 

correlated normally distributed (Gaussian) random field 
( )i iG G x


, where ix


 is a point in the field, can be produced 

according to 
 

ln XG LZ 
   

  [4] 
 
where L


  is a lower triangular matrix satisfying TLL C

    
 

(obtained using a Cholesky Decomposition), and Z


 is a 

vector of pn   independent standard normal random 

variables (mean zero, unit variance). 
The lognormal random field, X


, is obtained from the 

normal field, G


, using the following transformation: 

 
exp{ }X G

 
  [5] 

 
Although CMD is simple, it can be inefficient and inaccurate 
for large fields. For example, a field of size n n  requires 

a covariance matrix of size 2 2n n  so that if n  is large, the 
CMD becomes numerically intensive and unstable. 
However, CMD is perfectly adequate for small random 
fields, such as the one used in this research having a field 
size of 2 2 , depicted in Figure 1.  

 
 

4 METHODOLOGY 
 
As mentioned previously, both the load and the soil’s 
elastic spring constant are assumed to be lognormally 
distributed. An individual foundation is subjected to random 
load iF  having mean F  and standard deviation F . The 

foundation is also supported by an elastic soil with random 
effective spring constant iK  having mean K  and 

standard deviation K . For each realization of iK  and iF , 

1, 2, ..., pi n , where pn is the number of foundations in a 

foundation group, the maximum differential settlement is 
defined as  
 

max max i j
i j
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where 

i
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F
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is the settlement of foundation i . The settlement, which is 
the ratio of load over spring constant, is also random and 
lognormally distributed. Thus,  
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is normal with parameters:  
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where independence between the random variables iF and 

iK (or ln iF and ln iK ) was assumed in order to compute 
2
ln . With reference to Eq. 2, the mean and variance of 

load, iF , are  
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Similarly,  
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The simulation process is carried out as follows: 
 

1. Two lognormal random fields, each of size pn , 

are generated representing loads, 
iF , and spring 

constants, 
iK , associated with individual 

foundations in a foundation system arranged as 
depicted in Figure 1. 
  

2. For each foundation, settlement is calculated 
using Eq. 7 and the maximum differential 
settlement is determined for the foundation group 
using Eq. 6.  

 
3. Steps 1 and 2 are repeated simn times and the 

mean, 
max

 , and the standard deviation, 
max

 , of 

the maximum differential settlement is calculated, 
for all cases listed in Table 1.  

 
An exponential function of the form  
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was fit to  

max
 by least squares regression, where 
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Similarly, 

max
 is predicted by  
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where 
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 = 0.1333 + 0.5595

 = 0.09564 + 0.9009

 = 0.2406 + 0.2160
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For simplicity, the coefficients of variation and the 
correlation lengths of the random load and spring constant 
fields are assumed to be the same. In other words, it is 
assumed that Kv v and ln K  . 

The probability that the maximum differential settlement 
is lower than some magnitude a  can now be estimated 
using the lognormal distribution as follows: 
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where 

maxln   and 
maxln   are obtained through the 

transformations of Eq. 2 using the regressions given by 
Eq’s. 12 and 14. 
 
 
5 RESULTS AND DISCUSSION 
 
The objective of this section is to estimate the distribution 
of the maximum differential settlement of a foundation 
group. The parameters used in this case study are listed in 
Table 1 
 
Table 1. Input parameters used in simulation 

Parameters Values Considered

pn  4 

F  1 N 

K  1 N/m 

Fv  0.25 

Kv v  0.1 to 0.5 
s   1 m 

ln /F s  2.0 

ln /K s  0.1 to 50.0 

simn  1,000,000 

 
The simulation involves 1,000,000simn  realizations. 

The standard deviation of a probability estimate is thus  

(1 ) / 0.001simp p n p  for small probability p . This 

means that if 41 10p   , then the standard deviation of its 

estimate is about 510  and therefore, 1,000,000simn  can 

accurately resolve probabilities down to about 410  and 

reasonably accurately down to about 510 .  
To demonstrate the agreement between the regression 

prediction given by Eq’s 12 and 14, the probability 

maxP[ ]a   can be estimated both by the regression and by 

the simulation and the pair of probability estimates can be 
plotted against each other. In Figure 2, these pairs of 
probabilities are plotted for 0.05, 0.10, 0.15, , 5.00.a    The 

upper bound on a  was selected to be approximately equal 
to the mean maximum differential settlement plus four  
standard deviations. For the worst case, when 0.5v  , 

0.1  , the mean maximum differential settlement is 

max
1.3   with standard deviation 

max
0.8  , resulting in 

a max value of 1.3 4(0.8) 4.5  , which was rounded up to 

5.00.  

 
 

Figure 2. Predicted, obtained via Eq. [16], versus simulated 
probability  maxP a  , for all cases listed in Table 1 and for

0.05, 0.10, 0.15, , 5.00.a     

 
Good agreement between the regression and 

simulation results would lead to all points lying along a line 
having slope 1. As can be seen from Figure 2, some of the 
regression results show trends that are slightly different 
from the simulation results. As it turns out, the poorer 
agreements occur for the lowest coefficient of variation 
considered, 0.1v  . 

The reason for the poorer performance of the 0.1v   
regression lies in its use of the lognormal distribution. The 
lognormal distribution does not closely describe the actual 
distribution at this small coefficient of variation. Figure 3 
compares a lognormal fit and a Gamma distribution fit to 
the actual frequency density. As can be seen, the Gamma 
distribution shows a much better agreement with the 
simulation results. The consideration of the Gamma 
distribution fit is left for future research and not pursued 
further in this paper since the lognormal does very well at 



 

the higher coefficients of variations and reasonably well 
even at 0.1v  . 

 
Figure 3: Frequency density of maxX   for 0.1v  and 

ln / 2.0K s   with fitted Gamma and lognormal 

distributions.  
 
 

To investigate how the regression derived probabilities 
perform at higher maximum differential settlements, Figure 
4 has been produced to compare  maxP a  for higher 

values of 3.00, 3.05, 3.10, , 5.00.a   It can be seen that 

even at these relatively small probabilities, the agreement 
between predicted and simulated is reasonable. 
 

 
 
Figure 4. Predicted, obtained via Eq. [16], versus simulated 
probability  maxP a  , for all cases listed in Table 1, and 

for 3.00, 3.05, , 5.00.a     

 

6 EXAMPLE 
 
To illustrate how the results presented in this paper can be 
used in a design context, consider the following example. 
Suppose we have a 4-foundation system arranged on a 
square grid with center-to-center separation distance equal 
to 5s   m, each subjected to a mean load 200F   kN with 

coefficient of variation of 0.25Fv  . As in the above 

theory, it is assumed that the load correlation length is 
equal to twice the center-to-center foundation spacing (

ln / 2F s  ). Suppose further that the supporting soil has 

mean effective spring constant 20000K  kN/m , taking 

into account the geometry of the foundation, also with  
coefficient of variation of 0.3Kv  . Finally, assume that 

the correlation length of the soil is ln 15K   m. 

 The Canadian Foundation Engineering Manual (CGS, 
2006) specifies allowable angular distortion of about 1/200 
for structural damage (ULS) and 1/500 for cracking of walls 
and partitions (SLS). For a foundation spacing of 5s  m, 
these limits correspond to maximum differential 
settlements, at least between closer foundations, of  
5/200=0.025 and 5/500=0.01 for ULS and SLS 
respectively. Note that the diagonal distance has been 
ignored for simplicity. To handle this case properly, it would 
be better to look at maximum differential slope between 
pairs of foundations, which is left for future work. 
 In order to use the above regression results to find the 
failure probability maxP[ ]a  , the example values must be 

scaled to match the results presented in this paper, where 

1F

K




  and 1s  . In other words, the maximum acceptable 

differential settlements must be scaled up by a factor of 
200

/ 100
20000

F

K




 and the correlation length scaled down by 

a factor of 
1 1

5s
 . This means that the acceptable 

maximum differential settlements become 100(0.025) = 2.5 
for ULS and 100(0.01) = 1 for SLS. In addition, a correlation 

length of  ln 15
' 3

5
k

s

     should be used in calculating 

the mean and standard deviation of max .  

Next, the values of 1 2 3, ,a a a  can be calculated for 

0.3v   using Eq. 13, 
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Similarly, for 0.3v  , Eq. 15 gives, 
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so that 
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The mean and standard deviation of max  are 

converted to log-space, using Eq. 2, 
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Finally, at ULS, the failure probability is computed as, 
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while at SLS, 
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If the target reliability at ULS is approximate 1/1000 
(corresponding to a reliability index of about 3.0), then the 
foundation in this example is not safe enough for design at 
ULS. Similarly, the almost 17% failure probability at SLS 
seems excessively high in practice.  

Note that the simulation run of this example, 
performed above, gives a ULS failure probability of 0.0014 
(compared to the estimate above of 0.004), and an SLS 
failure probability of 0.15 (compared to the estimate above 
of 0.17). The agreement is quite reasonable. A difference 
of a factor of about 3 in the small ULS failure probability 
estimates is not particularly surprising. The important thing 
is that the probabilities are of the same order of magnitude.  

 
 

7 CONCLUSIONS 
 

In this paper, the distribution of the pair-wise 
maximum differential settlement of a 4-foundation group is 
investigated and developed as a function of the degree of 
spatial variability and correlation. The results of this paper 
assist in developing probabilistic design requirements 
which allow for acceptable target reliabilities against 
excessive differential settlement of foundations. A 

regression is derived for 1F

K




  and 1s  , which can be 

scaled to other foundation conditions to estimate ULS and 
SLS design  failure probabilities, as demonstrated in 
Section 6. 
 This preliminary study only considers a set of 4 
foundations arranged on a square grid. The study will be 

extended to more than 4 foundations and to the direct 
consideration of maximum differential slopes between 
foundations. Another extension considered for the future is 
to properly model the spatially variable soil and its 
interaction with the foundations using the random finite-
element method (RFEM). 
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LIST OF ABBREVIATIONS AND SYMBOLS USED 
 
ULS    Ultimate Limit State 
SLS    Serviceability Limit State 

ia        regression coefficients 

ib        regression coefficients 

K        soil’s spring constant (random) 
F        true load (random) 

pn        number of foundations in a foundation system 

simn      number of simulations 

fp
       

probability of failure   max=P a   

 P .       probability operator 

s          center-to-center foundation spacing 



 

v         common coefficient of variation of the random spring 
constant and load fields  

Kv       spring constant coefficient of variation ( / )K K   

Fv        load coefficient of variation ( / )F F   

Xv    coefficient of variation of the random field X  

( / )X X   

max
v    coefficient of variation of the random field X  

 
max max

/    

ix


        spatial coordinate of the ith point in the field 

X        random field 

( )i iX X x


 the random field value at location ix


 

i    foundation settlement as ratio of load to spring constant 

 /i i iF K   

max   maximum differential settlement in a pile group 

    common isotropic correlation length of the random 
spring constant and load fields  

'    scaled common isotropic correlation length of the 
random spring constant and load fields ( / s ) 

ln K   isotropic correlation length of the random spring 

constant field 

ln F      isotropic correlation length of the random load field 

K     mean spring constant 

F     mean load 

X     mean of the random variable X  

max
µ   mean maximum differential settlement 

ln K     mean of the random variable ln K  

ln F     mean of the random variable ln F  

ln X     mean of the random variable ln X  

maxlnµ    mean maximum ln-differential settlement 

 ij ij    correlation coefficient between X  at two 

points  

K      standard deviation of spring constant 

F      standard deviation of load 

X     standard deviation of the random variable X  

max
   standard deviation of maximum differential settlement 

ln K
  

standard deviation of ln-spring constant 

lnF
   

standard deviation of the ln-pile load 

ln X   standard deviation of the random variable ln X  

maxln  standard deviation of the maximum ln-differential 

settlement 

ij        lag distance between ith and jth points in the field 

 .   standard normal cumulative distribution function 


