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ABSTRACT 
Various approaches have been developed for analysing slope stability, including the well-known Fellenius and Bishop’s 
simplified procedures, as well as the more rigorous procedures due to Spencer and Morgenstern & Price. Gussmann 
(1982) introduced the kinematic element method (KEM) that is based on non-associated plasticity that easily 
accommodates non-circular failure surfaces. It rigorously accounts for the kinematics and statics of failure to provide an 
upper bound solution. This paper presents a simplified version of the KEM and proposes an extension to visco-plasticity 
that is intended to allow the accommodation of force redistribution due to creep.  Examples are given to compare the KEM 
solutions to those provided by the traditional slope stability strategies.  
 
 
RÉSUMÉ 
Diverses approches ont été développées pour analyser la stabilité des pentes, y compris les procédures simplifiées bien 
connues de Fellenius et Bishop, ainsi que les procédures plus rigoureuses dues à Spencer et Morgenstern & Price. 
Gussmann (1982) a introduit la méthode des éléments cinématiques (KEM) basée sur une plasticité non associée qui 
s'adapte facilement aux surfaces de rupture non circulaires. Cette méthode tient rigoureusement compte de la 
cinématique et de la statique de l'échec à fournir une solution de limite supérieure.  Cet article présente une version 
simplifiée du KEM et propose une extension à la visco-plasticité qui est destinée à permettre l'accommodation de la 
redistribution des forces dues au fluage. Des exemples sont donnés pour comparer les solutions KEM à celles fournies 
par les stratégies traditionnelles de stabilité des pentes.
 
 

 

1 INTRODUCTION 
 
An important class of problems in geotechnology is slope 
stability, which is most often analyzed using the method of 
slices within a limit equilibrium method (LEM) framework.  
Various analysis procedures have been developed 
including, for example, those of Fellenius (1926), Janbu 
(1954), Bishop (1955), and Morgenstern and Price (1965).  
The main difference between them is how they deal with 
the interslice forces and moments. According to Pyke 
(2017), methods that do “fully satisfy equilibrium” such as 
those of Spencer (1967) tend to be preferred by both 
academics and practitioners. Nevertheless, he 
demonstrated that ordinary method of slices, which only 
considers global moment equilibrium, does not suffer 
spurious predictions that are associated with the location 
of the line of thrust. 

Although we can deal with complex stratigraphy, pore 
pressure distributions and mechanisms the variation in 
properties can still present problems.  Krahn (2003) in his 
2001 R.M. Hardy address went as far as to point out that 
the method of slices, developed for the situation where the 
normal (and shear) stresses along the slip surface is 

primarily influenced by gravity, has been pushed far 
beyond the initial intended purpose. He further suggests 
that the absence of strain and stress compatibility 
handicaps the limit equilibrium method.  To partially 
mitigate this handicap, Stolle and Guo (2008) developed a 
LEM that allows for velocity-dependent sliding between 
rigid slices.  

Models based on the method of slices tend to be 
oversimplified at times thereby missing important physics, 
which can lead to questionable predictions. If details are 
important then finite element analysis, which lends itself 
well to the analysis of non-homogeneous bodies and 
design details such as the presence of anchors, is a much 
better tool; see, e.g. Griffiths and Lane (1999).  An 
excellent overview of slope stability analysis is presented 
in the book by Duncan and Wright (2005).  

From a design point of view, we should keep the 
process as simple as possible but no less, as we may not 
properly capture the salient features of the problem. The 
challenge is achieving a good balance.  The method of 
slices is satisfactory for some problems, such as those 
where details are not important.  A powerful procedure not 
receiving much attention is the kinematic element method 



 

(KEM) developed by Gussmann (1982). The objective of 
this paper is to present his procedure and make 
comparisons with the method of slices. 
 
 
2 BACKGROUND 
 
We borrow heavily from the publications of Gussmann 
(1982, 1996, 2000), but change the notation to one that is 
more in line with that commonly adopted in the method of 
slices. For this exposition, we keep the presentation 
simple, by considering only gravity loading and no tension 
cracks emanating from the surface, as well as neglecting 
the influence of water. The body is assumed to the 
homogeneous and of unit width.  

Gussmann’s method  is based on an upper bound 
collapse theorem presented by Gudehus (1972), which 
states “A body cannot fail if no kinematically admissible 
virtual displacement field (satisfying the kinematic 
boundary conditions and compatible with the flow rule of 
the material) exists for which an excess kinetic energy is 
produced.” The advantage of this plasticity collapse 
theorem is that it can be applied with a non-associative flow 
rule as long as one proceeds kinematically and statically 
correct.  Slip circle analysis is a special case of an upper 
bound solution (if properly formulated).  The previously 
mentioned factors that are neglected for purposes of 
clarification can be included; however, there is no 
guarantee that the predicted factor of safety is an upper 
bound.   
 
2.1 Kinematic Element Method 
 
There are two main tasks involved in the limit equilibrium 
method: (a) selecting a failure mechanism and using statics 
and determining the factor of safety (Fs) via static analysis; 
and (b) repeating the first task for various potential 
mechanisms to identify the minimum Fs.  An important 
aspect of these tasks is subdividing the domain of interest 
and then allocating the material properties to each slice (or 
element).  

Regarding Task (a), which is the focus of this paper, 
various analysis methods have been developed with the 
main difference lying in the assumptions associated with 
the interslice forces. Task (b) may be considered an 
optimization problem subject to constraints where the 
objective function is to minimize Fs, subject to constraints. 
Thus, it is advantageous to use an intelligent (efficient) 
search routine of which there are many.  For the research 
carried out by the authors, the genetic algorithm 
implemented by Karchewski et al. (2011) was adopted. 
Gussmann uses Particle Swarm Optimization; see, e.g., 
Cheng et al. (2007). 

 
2.1.1 Kinematics 
 
Borrowing from Gussmann’s approach, we require a well-
defined mechanism to establish the direction of shear at 
the interface between elements.  Shear develops at the 
interface between elements, except for a circular slip of a 
homogeneous body, which allows for rigid-body rotation. 
The interface forces have a direct influence on the 

distribution of normal and shear forces along the base, 
known as the failure (or critical) surface. In KEM, only 
translation modes are allowed. Without rotation there is no 
energy associated with the moments and therefore 
moments need not be considered.  It is assumed that the 
locations of the application of forces implicitly take care of 
themselves.  This may restrict movement but simplifies the 
analysis 

Similar to limit equilibrium analyses a potential failure 
surface must be assumed, a priori. Let us begin with the 
slope problem shown in Figure 1(a), where we have only 
one “row” of four elements, supported by a perfectly rigid 
material. A simple discretization allows us to keep an eye 
on the assumptions and to simplify the resulting equations.  
The introduction of more rows is beyond the scope of this 
paper.  Kinematic elements are rigid with deformation 
(relative sliding) only taking place along the boundary 
between the elements and along the slip surface 1-3-5-7-
9.  We assume that there is no dilation at the interfaces, 
which implies that the normal relative velocities between 
neighboring elements and perpendicular to the slip surface 
are zero. 

 
 

 
 
Figure 1:  Definition of slope problem for simplified mesh: 
(a) Geometry and element numbering; and (b) Statics 
 
 

Let us look what happens between elements1 and 2. 
The element velocities along edges 1-3 and 3-5 are 

1 1 1 1v (c ,s )=v and 2 2 2 2v (c ,s )=v , respectively, where

i i i i(c ,s ) (cos ,sin ) = ,  with the index i denoting the 

corresponding element number and i being the angle of 
the velocity vector relative to the x-axis.  If we let the unit 
vector for interface 3-4 be defined as  

t t t t t(c ,s ) (cos ,sin ) = =t , then we can determine 2v in 

terms of 1v  and the velocity of element 2 relative 1 21( )v

in the direction tt   as 

 
  

 

 
t 1

2 1

t 2

sin( - )
v = v ; etc.

sin( - )
                      [1] 



 

 
and 
 
 

 

 

−
 =

−

2 1
21 1

t 2

sin( )
v v ;   etc.

sin( )
                   [2] 

 
 

Figure 1(a) demonstrates 21 2 1 = −v v v  graphically.  An 

examination of these equations indicates that if we define 

1 1v = , then we know the velocities of all elements, as well 

as the relative velocities.  The definition of the mechanism 
is important with regards to defining the orientation of the 
shear forces.  The shear directions shown in Figure 1 
correspond to the slope moving from left to right.  
 
2.1.2 Statics 
 
Once the mechanism has been identified and direction of 
shear on each interface is established, the next task is to 
identify the factor of safety Fs that reduces the limiting 
shear forces to a point where the equilibrium can be 
satisfied where the Coulomb failure condition is assumed 
to apply; i.e.,   
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in which T represents the mobilized shear resistance, N is 

the normal force on the slip surface, C c= , with  and c 

denoting the friction angle and cohesion, respectively,  
representing the length of a slice at its base and Fs being 
the factor of safety.  This criterion is also assumed to apply 
to each interface, with T and N being replaced by S and E, 
respectively. No distinction is made here between total and 
effective stress, although strictly speaking failure depends 
on the effective stresses.  
 
Referring to Figure 1(b) and assuming that there are no 
surface forces, equilibrium yields 
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in which, for example, 1-2n and 1-2t denote the outward 

normal and tangent directions along local boundary 1-2, 
respectively, assuming the right-hand-rule convention.  
The term associated with brackets on the right-hand side 
is a vector expressed as an order pair. Applying similar 
operations to all elements leads to a system of linear 
equilibrium equations in terms of forces that can be 
reduced to a matrix form, where the normal forces and Fs 
remain as the unknowns given the Coulomb constraints 
and the known boundary conditions along 1-2 and 9-10. A 

useful relation between normal n and tangential t directions 

is 
x y y x(n ,n ) (t ,-t )= where the terms in brackets represent 

the direction cosines relative to the x-y frame of reference.  
 
2.1.3 Search for Global Minimum 
 
The resulting matrix equation is nonlinear in Fs. Thus, an 
iterative procedure is required to identify the root that 
delivers the minimum factor of safety for the given 
mechanism that properly satisfies the physics. The reader 
is referred to Gussmann (2000), who provides an efficient 
algorithm for this task.  Since the assumed mechanism 
does not necessarily correspond to the global minimum Fs, 
similar analyses are repeated assuming other failure 
patterns. Within the context of KEM, all interfaces are 
potential slip surfaces.  As a result, when searching for the 
critical failure mechanism, all vertices except those defining 
the slope are variables in the optimization process.  The 
moveable vertices along the surface must remain on the 
surface.  Furthermore, should the domain of interest be 
heterogeneous, it is necessary to find average values of 
the properties along each interface and along the basal slip 
surface. 
 
2.2 Limit Equilibrium Method 
 
The equilibrium equations that we obtained by introducing 
the failure equations and direction cosines into Eq. (4) are 
rather long.  In this section we develop the corresponding 
equation for the method of slices where it is assumed that 
the lateral shear is given by   the Spencer assumption 

S (E U)=  − , in which λ, E and U denote scaling factor, 

total horizontal force on an interface. and corresponding 
water force, respectively.  The scaling factor is a constant 
that corresponds approximately to the slope of the surface. 

Along the base we have b sT [(N U ) tan c ] /F= −  + , in 

which N and Ub are the total normal force and basal water 
force, respectively.  The other terms are the same as 
defined previously 
 
 

 
 
Figure 2:  Definitions for method of slices: (a) Geometry 
and element numbering; and (b) Statics 
 
 
Referring to Figures 2(a) and (b), we have a slope 
subdivided into 3 slices and free body diagram for slice 2.  
The notation is simplified and since both lateral slices are 



 

vertical, we can write equilibrium for a single slice in 
incremental form as, 
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in which  denotes an increment, tm =  tan ϕ Fs⁄  and 

Cm = cℓ Fs⁄ , with ℓ being the length of the base of a slice.  
Given that the height of one edge of a slice is zero at the 
beginning and at the end of the slip surface, and  

ii
E 0 = , we can write after algebraic manipulation, 
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We could just as well have adopted KEM and assumed that 
the vertical faces satisfy the Coulomb criterion. However, 
experience has shown that the factor of safety tends to be 
too high when forcing vertical interfaces, given that it is 
unlikely that all vertical interfaces would correspond to slip 
lines. 
 
 
3. NUMERICAL EXAMPLES 
 
Referring to Figure 3, we consider an example addressed 
in the classic paper by Fredlund & Krahn (1977), in which 
three cases were considered: (a) 12 m high, 2-1 slope 
resting on 7.5 m thick subgrade of similar uniform material 
(Soil 1); (b) Case (a) with the addition of a 1 m thick weak 
layer (Soil 2), 1.5 m below the subgrade; and (c) Case (a) 
with a 1-10 sloping piezometric surface that meets the 
subgrade surface at the toe of the slope. The saturated unit 
weight is assumed to be the same as the dry unit weight.  
Table 1 provides the soil properties.  

Figure 3 shows the critical surfaces for each case 
computed by the limit equilibrium method (Karchewski, 
2012) along with the critical mechanisms predicted by the 
kinematic element method (Gussmann 2000). The factors 
of safety are summarized in Table 2, along with published 
results by (Fredlund and Krahn, 1977). 
 
 

Table 1. Slope properties (Fredlund and Krahn, 1977) 
 

  Material    (o)  c (kPa)  (kN/m3) 

  Soil1   20  28.7 18.85 

  Soil 2   10   0 18.85 

 
 
Referring to Table 2, we observe that the predicted 

factors of safety are slightly less than those published for 
all cases.  The predictions by LEM correspond to those in 
which slices were used.  The results with 36 slices were 
virtually the same given that the solutions for Fs are not 

unique when using a genetic algorithm.  The parameter  
is a system (or fitting) parameter and not a material 
property.  For the three cases shown in Figure 3. The 
respective values were approximately 0.31, 0.15 and 0.33.  

All simulations assumed that S =  E (Spencer 
approximation).    

The published results are also based on the 
Morgenstern-Price method. Except for the case of the 
slope with a weak layer the solutions correspond to circular 
failure surfaces.  We clearly observe when examining 
Figure 3(a) that the classical assumption of circular failure 
is reasonable for a soil with uniform and relatively isotropic 
properties. The objective of analyzing Case (b) was to 
determine whether the KEM is capable of identifying the 
block sliding mechanism, which is assumed to be the 
correct failure mechanism for this slope. The KEM does in 
fact locate the block sliding mechanism and provides a 
critical failure surface similar to that predicted LEM.  

As might be expected, the addition of a water table for 
Case (c) reduces the effective stress in the soil, thereby 
reducing the factor of safety by approximately 37%. The 
failure mechanism is altered from a toe failure to a deeper-
seated failure, with the critical slip surface obtained using 
the KEM being deeper.  The addition of more elements did 
not shift the failure surface upwards. 
 
 
Table 2. Comparison of factors of safety, Fs 
 

Case L KEM Spencer M&P 

  (a) 1.98 1.96 2.07 2.08 

  (b) 1.24 1.24 1.37 1.38 

  (c) 1.78 1.81 1.83 1.83 

 
 
The question arises, what is so special about the kinematic 
element method?  As indicated previously, the procedure 
is based on a collapse theorem that provides an upper 
bound.  Unlike the limit equilibrium approach, in which the 
relation for interslice shear is chosen for algebraic 
convenience, the lateral interfaces for KEM represent slip 
lines that depend on the Coulomb failure criterion.   
 



 

 
Figure 3: Critical slip surfaces for Cases (a), (b) and (c). 

 
  

A second advantage is the smaller number of elements 
that are required, which makes the failure mechanism more 
transparent.  Figure 4 shows results corresponding to a 
simple mechanism for Case (a), which has an Fs = 2.01.  
The forces are well defined, although where they act along 
the element boundary remain unknown.  Nevertheless, all 
the information that we require is easily available, without 
additional assumptions being necessary. 

For KEM, the motion is restricted to translational, which 
is why it is not necessary to consider moments as indicated 
earlier.  Each slice in the LEM represents a narrow body. 
We do not take into account how the forces are transmitted 
along the slice.  Based on experience, we observed that 
the predictions of basal forces in the LEM are sensitive to 
small changes in the interslice force distribution  That is,  a 

small variations in the parameter  can lead to a significant 
change in the normal force and shear force distributions 
along the base. 
 
 
4. INFLUENCE OF DEFORMATION 
 
The traditional limit equilibrium method has advantages in 
its simplicity.  On the other hand, a very important aspect 
that is lost is the influence of creep on load redistribution 
within the slope and on the corresponding factor of safety.  
To accomplish this, it is necessary to take into account a 
coupling between the kinematics and equilibrium.  An 
attempt to partially accomplish this was presented by Stolle 
and Guo (2008), in which they used nonlinear sliding 
relations to take into account “deformation” influences.  In 
this section we propose an alternative approach to that 
presented previously. 
 

 
 
Figure 4:(a) Mechanism and (b) forces for Case (a) 

 
 
Borrowing from Zienkiewicz and Godbole (1974), Stolle 

et al. (2004) developed a visco-plasticity approach to 
model the potential for slope instability.  Using the same 
logic, the following constitutive law can be derived, 
 
 

( )

s

Ntan c v
T v

F v

 + 
=  +


                               [7] 

 
 
in which   is a pseudo-viscosity term that represents the 

minimum possible value for viscosity and v is the relative 
velocity between the two sides of an interface similar to 
what we have in Eq. (1) and Eq. (2). The other terms are 
the same as defined previously. If an appropriate value for 
  is selected, we can proceed as we did previously to 

determine Fs with the KEM equivalent to Eq. (5) since v  

is known and is moved to the right-hand side. The 
kinematics automatically account for the direction of T 

through the term v/ v  .  Referring to Eq. (6), the effect 

of the deformation term on Fs is obtained by replacing the 

term ( )sin W U  +   with ( )sin W U v  +  +   .  

Although it is not obvious, sin  negative along much of 

the basal boundary, whereas v is positive.  This has the 

net affect of increasing the factor of safely. 
We must remember that the objective of the exercise is 

to find Fs that allows the given mechanism to form. 
 

 
5 CONCLUDING REMARKS 
 
As was indicated at the beginning of the paper, the primary 
objective was to present a simplified kinematic element 
method for slope stability.  An important aspect of the 
procedure is that no assumptions must be made, a priori, 



 

regarding the treatment of the inter-element forces and that 
an important part of the solution procedure is to identify the 
orientation of the lateral surfaces to ensure that they 
correspond to “slip lines”. The quotation marks are 
intended to emphasize that the lines correspond to factored 
strength parameters.  

It should be mentioned that KEM requires an 
understanding of mechanics and should not be used as a 
black box. 
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