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ABSTRACT 
The analytical solutions of single-layered ground consolidation were studied under the sinusoidal loading, triangular loading 
and rectangular loading mode. The series separation variable method (SSVM) was applied to the solution. Research shows 
that the settlement of ground caused by sinusoidal loading is the largest, followed by rectangular loading and triangular 
loading. The finite element method was adapted, DLOAD subroutines of different loading modes were programmed in 
FORTRAN language, and the differences between analytical and numerical solutions were compared and analyzed. 
Furthermore, the refraction law of elastic stress wave and SSVM were employed to solve the analytical solution. The 
influence of modulus ratio on dynamic consolidation deformation of double-layered ground was discussed. Results 
demonstrated that the larger the modulus ratio of double-layered ground is, the larger the soil deformation presents. 
 
RÉSUMÉ 
Les solutions analytiques de consolidation de sol monocouche ont été étudiées sous le chargement sinusoïdal, le 
chargement triangulaire et le mode de chargement rectangulaire. La méthode des variables de séparation en série (SSVM) 
a été appliquée à la solution. La recherche montre que le tassement du sol causé par la charge sinusoïdale est le plus 
important, suivi par la charge rectangulaire et la charge triangulaire. La méthode des éléments finis a été adaptée, des 
sous-programmes DLOAD de différents modes de chargement ont été programmés en langage FORTRAN, et les 
différences entre les solutions analytiques et numériques ont été comparées et analysées. En outre, la loi de réfraction de 
l'onde de contrainte élastique et de la SSVM a été utilisée pour résoudre la solution analytique. L'influence du rapport de 
module sur la déformation de consolidation dynamique du sol à double couche a été discutée. Les résultats ont démontré 
que plus le rapport de module du sol à double couche est élevé, plus la déformation du sol est importante. 
 
 
 
1 INTRODCTION  
 
With the rapid development of China's economic 
construction, a large number of infrastructure construction 
is booming in coastal cities, where the soft clay is widely 
distributed. However, the dynamic consolidation problem is 
prominent for soft clay ground. The consolidation of soft 
clay leads to the drainage of water in the soil under the 
complex traffic loading, and the soft clay ground may 
produce an excessive settlement. The dynamic 
consolidation belongs to the fluid-solid coupling, however, 
the majority of the literature reviews focuses on the 
consolidation of soft clay under static loadings rather than 
dynamic loadings. In engineering practice, the soft ground 
in coastal areas is subject to a complex traffic loading. 
Definitely, sinusoidal loading, triangular loading and 
rectangular loading are often used to simulate traffic 
loading modes, and the amplitude of traffic loading is about 
50kPa~100kPa (Cai et al. 2012; Mohanty and Ranjan. 

2014; Lei et al. 2019). However, the different loading 
modes have a great influence on the dynamic consolidation 
deformation characteristics of soil. Therefore, it is critical 
and necessary to explore the deformation development of 
soft clay ground under different dynamic loading modes.  

Terzaghi (1925) established consolidation theory and 
gave the corresponding analytical solution to predict the 
consolidation in single-layered soil under the static loading. 
Analytical solutions for dynamic consolidation of single-
layered soft clay ground have been an interesting topic and 
an increasing number of theoretical studies on it can be 
found in Duncan (1993), Wang et al. (2003) and Chen 
(2004). Wilson et al. (1974) and Baligh et al. (1978) 
respectively developed an analytical solution for the 
consolidation of a soil layer subjected to a cyclic square 
loading. Alonso et al. (1974) studied a random loading 
solution for consolidation. Wu et al. (1994) offered the 
solution under arbitrary cyclic loading using the Laplace 
transform method. Although many studies show the 



 

analytical solution of consolidation, it often needs to solve 
complex partial differential equations, which brings a lot of 
inconvenience to calculation analysis and engineering 
application. New methods provide a guarantee for dynamic 
consolidation such as Laplace transform and matrix 
transformation method, numerical analysis. Cai et al. 
(1998) used the Laplace transform and matrix 
transformation method to solve the one-dimensional 
consolidation of soft clay ground under the complex 
conditions of nonlinear, viscoelastic, variable load and 
stress history. A numerical method of differential 
quadrature method (DQM) for solving partial differential 
equations is proposed by Mittal et al. (2011), the main idea 
is solving algebraic equations after DQM transformation.     

Layered soil consolidation calculation problems are 
often encountered in engineering practice, and layered soil 
consolidation theory has always been concerned. Gray 
(1945) first established a linear consolidation model of 
double-layered soil and gave its analytical solution under a 
constant loading. Xie et al. (1999) presented a fully explicit 
analytical solution for the consolidation of partially drained 
boundaries double-layered soil subjected to constant 
loading. Davis and Raymond (1965) obtained a nonlinear 
consolidation solution for homogeneous soils by assuming 
that the compressibility of the soil during compaction is 
proportional to the change in permeability. The linearity and 
nonlinearity of the saturated soft clay ground under 
different boundary conditions are widely investigated. For 
example, nonlinear consolidation behavior was analyzed 
and solved numerically by Liu et al. (2009), Xie et al. (2007) 
and Ejian et al.(2009), who used Hansbo formula and the 
non-Darcy flows considering the initial water flow gradient. 

Although many scholars are devoted to the analytical 
solution of dynamic consolidation deformation of soft clay 
ground, there is no consensus in theoretical analysis. 
Especially on the simplification of dynamic loading, 
different scholars regard dynamic traffic loading as 
sinusoidal loading, triangular loading and rectangular 
loading according to research problems. However, few 
experts have carried out systematic research on the 
consolidation deformation of single or double-layered soft 
clay ground under three loading modes of sinusoidal 
loading, triangular loading and rectangular loading. 
Therefore, based on Terzaghi's consolidation theory, the 
analytical solution of dynamic consolidation deformation of 
the single-layered ground under three loading modes is 
obtained by using the method of series separation of 
variables. Using ABAQUS finite element software, DLOAD 
subroutines of different loading modes are implemented by 
FORTRAN language, and the differences of analytical and 
numerical solutions of dynamic consolidation deformation 
of soft clay ground under different loading stress 
amplitudes are compared and analyzed. At the same time, 
the refraction law of elastic stress wave and the method of 
series separation variable are used to solve the analytical 
solution of dynamic consolidation deformation of double-
layered soft clay ground, and the influence of modulus ratio 
on dynamic consolidation deformation of the double-
layered ground is discussed. 

 
 

2 PROBLEM DESCRIPTION AND BASIC 
ASSUMPTIONS 

 
Terzaghi (1925) proposed the consolidation theory of 
saturated clay soil. The mathematical derivations are 
based on the following six assumptions (Taylor, 1948). 

1. The clay-water system is homogeneous. 
2. Saturation is complete. 
3. Compressibility of water is negligible.  
4. Compressibility of soil grains is negligible. 
5. The flow of water is in the direction of compression. 
6. Darcy’s law is valid. 
According to the Terzaghi’s consolidation theory, the 

model calculation diagram is established in Figure 1. If the 
soil is completely saturated, the soil particles and pore 
water are incompressible, the volume change of the soil 
element should be equal to the difference between the 
surface flow and the volume, where depth is z, the height 
is dz in the soil element. Hence, the volume of 

compression, ΔV, is shown in Eq. 1.  
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where, σ’ is defined as an effective stress, t is time, mv is 
equal to the ratio between compressibility coefficient α and 
initial void ratio e0 plus 1, mv=α/(1+ e0). 

 

 
Figure. 1 Model calculation diagram 
 
On the basis of the effective stress principle, effective 

stress σ’ is followed by Eq. 2: 
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where σ is the total stress, u is the pore water pressure, p 
is the loading pressure, H is the depth of ground, γ’ is the 
effective unit weight.  

Combined Eq. 1 with Eq. 2, thus  
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where A is the hexahedron unit area 

Continuous deformation condition demonstrates that Δ

V =ΔQ. Thus,  
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where q is the water discharge per time, γ’ is the water unit 
weight, k is the hydraulic conductivity.  

So, the general form of one-dimensional consolidation 
equation is followed by Eq. 5: 
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where Cv is the consolidation coefficient.  



 

Three loading modes shown in Figure 2 are considered 
in this paper, i.e. sinusoidal loading, triangular loading and 
rectangular loading. The expression of the three loadings 
in initial one cycle is as follows: 

Sinusoidal loading: )()sin( 21 tttwtp d              

[6] 

Triangular loading: 
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Rectangular loading: 
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where, σd is the amplitude of sinusoidal load, w is circular 
frequency, φ is the initial phase angle, c1 is the slope of the 
loading line, c2 is the amplitude of rectangular loading. t1 
and t2 are the start and end time in a single cycle.  

(a) Sinusoidal loading   (b) Triangular loading  (c) Rectangular loading 
Figure 2 Three loading modes 
 

 

3 ANALYTICAL SOLUTIONS FOR DYNAMIC 
CONSOLIDATION OF THE SINGLE-LAYERED 
GROUND 

 
3.1 Single-layered ground under the sinusoidal loading  
 
The constant of αv, e, H, k and the variable of p is assumed, 
according to the Eq. 5, we can obtain the Eq. 9. 
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The partial differential equation 10 is given based on 
the Eq. 9 
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Boundary conditions are as follows: 
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where u0 is initial pore water pressure.  
Series separation variable method is applied to the 

partial differential equation 10. There are two steps to get 
the solution of the equation: first, find the solution of the 
homogeneous equation, which can determine the intrinsic 
function system and the form of solution. And then, the 
form of solution is determined by boundary condition 11. 

The form of solution of homogeneous equation is as 
follows: 

)()(),( tTzXtzu                                                                 [12] 

where, X(Z) and T(t) are the function of depth and time.  
Combined the Eq. 12 with the partial differential 

equation 10, Eq. 13 can be obtained as follows: 

)()()()( ''' tTzXCtTzX V                                                 [13] 


)(

)(

)(

)( '''

zX

zX

tTC

tT

V

                                                           [14] 

where, λ is the scale parameter 
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When λ＞0, Eq. 16 has the nonzero solution. Thus  
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where, A and B are the control parameter 
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Intrinsic function system is as follows: 
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Hence, the solution of partial differential equation is 
assumed by Eq. 20: 
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Combined with Eq. 10, the Eq. 21 is established. 
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where fn is in accordance with the Fourier transformation, 
thus   
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According to the general solution of )()(' xqyxpy  , 
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The constant of C is obtained by the boundary 
conditions. 
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Thus, the analytical solutions of partial differential 

equation 29 in single cycle: 
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[29] 

 
3.2 Single-layered ground under the triangular loading 

and rectangular loading 
 
Combined Eq. 9 with boundary condition 11, the nonlinear 
partial differential equation 30 for dynamic consolidation of 
soft clay ground under the triangular loading is established 
as follows: 
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Similarly, the intrinsic function system of homogeneous 
partial differential equation is shown in Eq. 31 
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So the solution of the non-line partial differential 
equation can be set as follows: 
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Eq. 32 is substituted into the Eq. [30,a], we can get Eq. 
33: 
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fn is expanded in accordance with the Fourier series, 
thus  
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as follows: 
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Based on Eq. 9 and boundary condition 11, the 
nonlinear partial differential equation 39 for one-
dimensional dynamic consolidation of soft clay ground 
subjected to triangular loading is also established as 
follows: 
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The problem is simplified as a one-dimensional 
consolidation theory. So the analytical solution is as 
follows:  
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To describe the variation of accumulative pore water 
pressure, the pore water pressure of each cycle is added 
up, as shown in Eq. 41. 
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Combined with the definition of consolidation degree, 

the settlement prediction formula of soft clay ground can be 
determined, as shown in Eq.42. 

         

 

                                     

 

[42] 

Combined with the results of analytical solution, the 
load amplitude of 50kPa, 80kPa and 100kPa respectively 
is selected based on the result proposed by Tang et al. 
(2009), which can simulate the traffic loading. The vibration 
frequency is 2Hz, the consolidation time is 30 days, the 
hydraulic conductivity is 0.0035m/d, the elastic modulus of 
soft clay ground is 3.854MPa, and the void ratio is 1.5. 

Figure 3 shows that the surface settlement increases 
with time and presents the fluctuation, which is different 
from the settlement development under the static loading. 
For the sinusoidal and triangular loadings, the settlement 
development form is basically consistent with the loading 
mode, which is different from the rectangular loading. This 
is mainly due to the soft clay ground is in the consolidation 
state during the process of rectangular loading. The 
settlement of soft clay ground under constant loading 
shows a rapid growth trend. When the loading is equal to 0 
kPa, the soft clay ground still has consolidation under the 
gravity load. When the load is suddenly applied, the excess 
pore water pressure rises suddenly, the effective stress 
decreases, and the settlement rebounds, which is the main 
reason why there is no rectangular repeated vibration. 

In addition, the settlement increases with the increase 
of loading amplitude. When the amplitude is 50kPa, 80kPa 
and 100kPa, the corresponding settlement is respectively 
16.76mm, 26.81mm and 33.51mm for sinusoidal loading, 
8.44mm, 13.50mm and 16.88mm for triangular loading, 
8.96mm, 14.34mm and 17.92mm for rectangular loading. 
Obviously, the dynamic deformation of soft clay caused by 
sinusoidal loading is larger than that caused by rectangular 
loading. And the dynamic deformation of soft clay caused 
by triangular loading is the smallest. Therefore, the 
influence of different loading modes on the dynamic 
consolidation deformation of soft clay ground should be 
emphasized in engineering practice. 
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(a) Sinusoidal loading 

 

 
(b)Triangular loading 

 
(c) Rectangular loading 

Figure 3 Settlement curve of soft clay ground under 
different loading amplitudes 

 
To illustrate the correctness of the analytical solution of 

dynamic consolidation deformation of single-layered soft 
clay ground under different loading modes, the results of 
the finite element are compared and verified. The boundary 
condition of the finite element is the key to the solution and 
iterative convergence. It needs to satisfy the boundary 
conditions of force, displacement and initial stress field. 
Force boundary condition: apply body force to form the in-
situ stress field, set three different loading modes at the 
Xmax position of the ground surface. Different loading 
modes need to be implemented through DLOAD 
subroutines programmed in FORTRAN language. 

Displacement boundary condition: fixed constraint is 
adopted for Xmin at the bottom of the model, horizontal 
displacement constraint is set at the position of Ymin and 
Ymax of the model, and pore water pressure is set to zero 
at Xmax of the ground surface, namely, the ground surface 
can drain freely. The model size is 10 m × 20 m, adopting 
the structured grid separation technology, 200 units are 
divided, and fluid-solid coupling element is chosen, as 
shown in Figure 4 

 

 
Figure 4 Finite element analysis model of single- layered 
soft clay ground 
 

 
(a) Sinusoidal loading 

 
(b)Triangular loading 

 
(c) Rectangular loading 

Figure 5 Comparison of analytical and numerical solutions 
of soft clay deformation under different loading modes 

 
Figure 5 shows that the numerical solution is basically 

consistent with the analytical solution. Through the 
statistical analysis, the maximum relative error between the 
numerical solution and the analytical solution of sinusoidal 
loading is approximately 1.2%, which can prove the 
correctness of the analytical solution of the deformation of 
single-layered soft clay ground. 
 



 

 
4 ANALYTICAL SOLUTIONS FOR ONE-

DIMENSIONAL DYNAMIC CONSOLIDATION OF 
THE DOUBLE-LAYERED GROUND 

 
The consolidation problem of the layered ground is often 
encountered in the engineering practice. But Terzaghi’s 
consolidation theory cannot be applied directly. To solve 
the problem, the bisector double-layered ground within the 
depth of 10m is chosen as an example, the concept of 
energy loss is proposed, which can solve the problem of 
double-layered ground and can be transformed into single-
layered ground. In addition, the influence of different 
modulus ratios of the upper and lower layers of soft clay 
ground on the dynamic consolidation deformation are 
investigated.  

In terms of layered elastic media, when the elastic 
shear wave propagates to the interface of two layers of soil, 
the wave will occur wave reflection and refraction, as 
shown in Figure 6. Considering that shear waves can 
cause a large settlement of the ground, this paper only 
considers the deformation of soil caused by shear waves. 

 

 
Figure 6 reflection and refraction of wave in layered 
interface 

 
Eq. 43 is given by the reflection and refraction law, as 

follows: 

21                                                                           [43-a] 
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where, 
1 , 

2 and 
3  are angle of incidence, the angle of 

reflection and the angle of refraction.
1v and

2v  are, 

respectively, the upper and lower layers of the shear wave 

velocity.  The shear wave velocity, 
1v and

2v can be 

expressed by 
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. 
1  and 

2  are the 

upper and lower layers of the density. 
The calculation of the stress wave is considered in the 

calculation process of the double-layered ground. When 
the elastic shear wave propagates to the interface of two 
layers of soil, the wave is refracted and reflected. 
According to the kinetic energy theorem, the degree of 
energy loss is defined as Eq. 44. 
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where, G1 and G2 are the initial shear modulus for upper 
layer and lower layer.  

Taking the homogeneous ground into account, the 
upper-layered loading, p1, of the ground can be transmitted 
to the lower-layered ground, which is the lower-layered 
loading p2. So, the loading acting on the lower-layered 
ground can be defined as Eq. 45.  

)()( 12 tptp                                                                            [45] 

Therefore, solutions of the dynamic consolidation under 
the sinusoidal loading, triangular loading and rectangular 
loading are shown in Eq. [46- 48]. The specific loading 
transfer principle is shown in Figure 7. 

 

 
Figure 7 Dynamic consolidation calculation model of 
double - layered soft clay ground 
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The variation of accumulative pore water pressure is 
also described by Eq. 49. 
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[49]

 
In light of the analytical solution of the deformation of 

the double-layered soft clay ground, the modulus ratio can 
reflect the deformation characteristics of the double-
layered soft clay ground. The "upper soft and lower hard 



 

ground" and "upper hard and lower soft ground" are the 
relative concepts of stratum rigidity. The thickness of both 
upper-layered soil and lower-layered ground is 5m, and the 
loading amplitude is 100kPa. The influence of the modulus 
ratio between upper and lower layered soil of 0.33, 0.5, 1, 
2 and 4 on the analytical solution of soft clay ground 
deformation is analyzed. 

Figure 8-10(a) illustrates that the surface settlement 
increases with the increase of modulus ratio. When the 
modulus ratio is 1, the soft clay ground is homogeneous. 
When the modulus ratio is 0.3 and 0.5. The soft clay ground 
presents "upper soft and lower hard". The relative rigidity 
of the lower-layered ground is large, which leads to a 
decrease of ground settlement. The modulus ratio is 2.0 
and 4.0, and the soft clay ground shows "upper hard and 
lower soft". The stiffness of the lower-layer ground is 
relatively small, and the subsoil produces a large 
settlement, which eventually leads to the increase of 
surface settlement. 

Figure 8-10 (b) shows that the settlement of lower-
layered ground is inconsistent with the surface settlement 
of upper-layered ground. For the homogeneous ground 
(modulus ratio of 1.0), the settlement is the largest. This is 
mainly due to the reflection and refraction of the stress 
wave at the layered interface in the process of propagation, 
resulting in energy loss. 
 

 
(a) Upper –layered settlement       (b) Lower –layered settlement 

Figure 8 Analytical solution of consolidation deformation of 
soft clay ground under sinusoidal loading 
 

 
(a) Upper –layered settlement    (b) Lower –layered settlement 

Figure 9 Analytical solution of consolidation deformation of 
soft clay ground under triangular loading 
 

 
(a) Upper –layered settlement      (b) Lower –layered settlement 

Figure 10 Analytical solution of consolidation deformation 
of soft clay ground under rectangular loading 

 
To verify the correctness of the analytical solution, the 

numerical solution of double-layered soft clay ground is 
developed. The model size, boundary condition and 
loading mode are consistent with the numerical solution of 
single-layered ground.  

The difference between numerical solution and 
analytical solution of soft clay under sinusoidal loading, 
triangular loading and rectangular loading is investigated. 
Figure (11-13) shows that the analytical solution is in good 
agreement with the numerical solution under three loading 
modes, so the correctness of the numerical solution can be 
proved. Through the statistical analysis, the maximum 
errors of settlement caused by sinusoidal loading, 
triangular loading and rectangular loading are 5.26%, 
4.92%, 4.76%, respectively.  

 

 
(a) Upper –layered settlement        (b) Lower –layered settlement 

Figure 11 Comparison of analytical and numerical solutions 
of ground deformation of soft clay under sinusoidal loading 
 

 
(a) Upper –layered settlement       (b) Lower –layered settlement 

Figure 12 Comparison of analytical and numerical solutions 
of ground deformation of soft clay under triangular loading 
 

 
(a) Upper –layered settlement       (b) Lower –layered settlement 

Figure 13 Comparison of analytical and numerical solutions 
of ground deformation of soft clay under rectangular 
loading 

 
 

5 CONCLUSIONS 
 



 

Based on the Terzaghi’s consolidation theory, the 
analytical solutions of single-layered and double-layered 
soft clay ground under three loading modes of sinusoidal 
loading, triangular loading and rectangular loading are 
obtained. The analytical solution of single-layered ground 
is obtained by the method of series separation of variables; 
the analytical solution of double-layered ground is obtained 
by combining the method of series separation of variables, 
the law of refraction of stress wave and the degree of 
energy loss. On this basis, the difference between the 
analytical solution and the numerical solution is compared 
and analyzed, the correctness of the analytical solution is 
verified, and the dynamic consolidation deformation of 
ground soil is discussed by the different loading 
magnitudes and modulus ratios, the following conclusions 
can be drawn: 

(1) The surface settlement increases with the increase 
of loading amplitudes. Under the same amplitude, the 
settlement caused by sinusoidal loading is larger than that 
caused by rectangular loading and triangular loading.  

(2) For the double-layered ground, the larger the 
modulus ratio is, the larger the deformation of the soil 
performs. 

(3) The analytical solution of consolidation deformation 
of soft clay ground has good consistency with the 
numerical solution, which proves the correctness of the 
analytical solution. The maximum relative error between 
analytical solution and numerical solution is 1.2% in terms 
of the single-layered ground, is 5.26% for the double-
layered ground. 
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