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ABSTRACT 
Traditional limit equilibrium (LE) slope stability analysis methods seek to locate one single critical failure surface. However, 
it is often desirable to consider multiple failure surfaces when dealing with real world problems. To achieve such a goal, 
this paper proposes two different methods: 1) probabilistic analysis with stochastic response surface (SRS), and 2) the 
locally informed particle swarm with radius (LIPS-R) niching algorithm. SRS is a very fast and effective alternative to Monte 
Carlo or Latin Hypercube sampling for probabilistic analysis. LIPS-R is an algorithm based on a niching method called 
locally informed particle swarm (LIPS) which uses a radius filter and a neighbour size of two. Both methods result in 
multiple failure modes, albeit using very different methodologies. An embankment example is considered and results using 
both methods are provided in this paper. Both methods located potential failures that a deterministic analysis would not 
have been able to locate. 
 
RÉSUMÉ 
Les méthodes traditionnelles d'analyse de la stabilité des pentes à l'équilibre limite (LE) cherchent à localiser une seule 
surface de glissement critique. Cependant, il est souvent souhaitable de considérer plusieurs modes de défaillance lors 
du traitement de problèmes réels. Pour atteindre un tel objectif, cet article propose deux méthodes différentes: 1) l'analyse 
probabiliste avec la surface de réponse stochastique (SRS), et 2) l'algorithme de niching de l'essaim de particules 
localement informé avec rayon (LIPS-R). SRS est une alternative très rapide et efficace à l'échantillonnage Monte Carlo 
ou Latin Hypercube pour l'analyse probabiliste. LIPS-R est un algorithme basé sur une méthode de niching appelée essaim 
de particules localement informé (LIPS) qui utilise un filtre à rayon et une taille voisine de deux. Les deux méthodes 
entraînent de multiples modes de défaillance, mais en utilisant des méthodologies très différentes. Un exemple de remblai 
est considéré et les résultats utilisant les deux méthodes sont fournis dans cet article. Les deux méthodes ont permis de 
localiser des défaillances potentielles qu'une analyse déterministe n'aurait pas pu localiser. 
 

1 INTRODUCTION 
 
Traditional limit equilibrium (LE) slope stability analysis 
methods seek to locate the slip surface with the lowest 
factor of safety (FS), known as the critical failure surface. 
The FS value can be calculated using one of many LE 
methods, such as Janbu’s generalized method (Janbu 
1954), the Morgenstern-Price method (Morgenstern and 
Price 1965), or Spencer’s method (Spencer 1967), 
amongst others.  

Various methods can be used to search the slope in 
order to determine this most critical failure surface. These 
range from simple brute force methods, such as a grid 
search, to advanced metaheuristic methods such as 
Particle Swarm Optimization (PSO) (Kennedy and 
Eberhart 1995), or Cuckoo search (Yang & Deb 2009), 
amongst others. 

After the global search method such as PSO has found 
the most critical surface, an additional local optimization 

method is often used to modify the geometry of the surface 
at a local level and thus minimize the FS of that surface 
further. Commonly used local optimization methods are 
Monte Carlo random walk (Greco 1996) and Surface 
Altering Optimization (SAO) (Cami et al. 2018).   

However, focusing the search effort on locating the 
single critical failure surface has its drawbacks.  

As pointed out by Reale et al. (2015) and Cho (2013) 
little research has been completed on slopes which could 
develop a number of critical slip surfaces with similar 
minimum FS. There are cases where the global minimum 
is of little practical importance, e.g. when the critical slip 
surface is too shallow to have any severe consequences, 
or when a slope is susceptible to multiple failure 
mechanisms, e.g. slopes with multiple benches and/or 
layers. Determination of ‘‘critical’’ slip surfaces is affected 
by the experience of the engineer or researcher, as only 
one failure mechanism can be identified in each trial. As 
noted by Griffiths et al. (2012) for slopes with multiple 



 

failure mechanisms, failure to detect some of the failure 
surfaces could lead to unsafe design, particularly for cases 
where remedial measures such as soil reinforcement are 
required. 

As an example, one can consider a typical slope 
stability analysis process. The engineer collects the soil 
parameter and geometry data for the slope, models it in an 
LE slope stability analysis package, uses a robust LE 
method and an advanced metaheuristic search algorithm 
with additional local optimization to locate the most critical 
failure surface. By doing so, the engineer has used the 
most recent advancement in slope stability analysis and is 
confident that the critical failure surface located, with an FS 
of 1.10, say, is in fact the most critical. The engineer can 
then take the necessary steps to support this surface.  

What the analysis didn’t reveal, however, was that there 
was another surface, with an FS of 1.23 in a different 
location on the slope. The metaheuristic search, in seeking 
the global optimum, has focused its efforts in the location 
of the most critical surface, and not in the search for other 
local optima.  

Furthermore, say the engineer used a value of 12 kPa 
in the second layer of the slope. But it turns out one of the 
data collectors had a faulty instrument that day. The true 
value of cohesion is 10 kPa. Running the analysis with 10 
kPa results in a critical failure surface in yet another 
location on the slope. 

In short, an engineer cannot rely on finding the single 
most critical failure surface and taking steps to support it. 
Multiple critical failure surfaces ought to be considered, 
both with the search algorithm itself, as well as through 
considering more than single fixed input parameters. 

The paper considers two very different methods of 
considering multiple failure surfaces and demonstrates 
their use through an example.  

The first method is probabilistic analysis, meaning an 
analysis that takes into account variability in the input 
parameters. Stochastic response surface, a method used 
to significantly speed up probabilistic analysis is explored 
in this study. 

The second method is multimodal optimization. A 
multimodal particle swarm algorithm, LIPS-R is proposed 
as a means of finding multiple local minima, or critical 
failure surfaces. 

The results of both methods are examined in a 
landslide model.  
 
 
2 METHODS 
 
2.1 Probabilistic Analysis with Stochastic Response 
Surface (SRS) 
 
2.1.1 Probabilistic Analysis 
 
The idea behind a probabilistic analysis is simple. Slope 
stability analysis requires the input of single parameter 
values, such as cohesion and friction angle for the 
materials in the slope; this is called a deterministic analysis. 
However, this means of doing the analysis does not 
consider any possibility of human or measurement error 
when obtaining these parameter values, nor does it 

consider the fact that strength parameters are not identical 
throughout the slope. Hence it puts too much confidence in 
these values. 

A more rational approach would take all the estimates 
of cohesion, for example, and consider a range of values. 
If the samples are plentiful, a distribution such as normal or 
lognormal of cohesion can be considered. If there are only 
a handful, a distribution such as uniform can be considered 
(i.e. a range of values is considered equally); this is called 
a probabilistic analysis. 

Once the input variables are distributions instead of 
single values, then each distribution can be sampled a 
desired number of times, and combinations of these 
samples are used to compute a FS for each computation, 
For example, if 1000 computations are desired, then each 
random variable is sampled 1000 times, and 1000 
simulations and hence FS values are computed. The 
probability of failure (PF) of the slope, is defined as shown 
in Equation 1. 

 
 

𝑃𝐹 =
Number simulations with FS <1

Total number of simulations
 𝑥 100%                  [1] 

 
 

However, computing thousands of limit equilibrium 
analyses takes much more time than computing a single 
analysis. Stochastic response surface is used to accelerate 
the probabilistic analysis in this study. 

 
2.1.2 SRS 
 
The stochastic response surface uses a small number of 
strategically selected computations to create a response 
surface of factor of safety values for various combinations 
of input parameters. It then predicts the factor of safety 
values for any combination of samples and provides an 
estimated probability of failure. Since a probabilistic 
analysis can take hours or days, this method is 
advantageous in significantly cutting down computation 
time.  

The SRS methodology used in this study follows that 
outlined by Isukapalli (1999). The steps are outlined below: 
 
Step 1: Convert all variable distributions to standard normal 
 
The initial random variables are converted from the desired 
distribution to standard normal random variables using 
transformation equations (Li et al., 2011). As an example, 
the transformation equations for uniform, normal, and 
lognormal distributions are presented in Table 1. 
 
 
Table 1. Transformation of three common distributions to 
standard normal (after Li et al., 2011) 
 

Distribution 
Probability density function, 

𝒇(𝒙) 
Transformation 

𝒙 = 𝒇(𝑼) 

Uniform 𝑓(𝑥) =
1

𝑏 − 𝑎
 𝑥 = 𝛷(𝑈)(𝑏 − 𝑎) + 𝑎 

Normal 𝑓(𝑥) =
1

√2𝜋𝜎
𝑒𝑥𝑝(−

1

2
(
𝑥 − 𝜇

𝜎
)2) 𝑥 =  𝜇 + 𝜎𝑈 



 

Lognormal 𝑓(𝑥) =
1

√2𝜋ξ𝜎
𝑒𝑥𝑝(−

1

2
(
𝑥 − 𝜇

𝜎
)2) 𝑥 = 𝑒𝑥𝑝(ξ𝑈 + 𝜆) 

 
 
Step 2: Represent resulting FS in polynomial chaos 
expansion form. 
 
The 3rd order Hermite polynomial expansion was used in 
this study, shown in Equation 2. 
 
 

𝐹(𝑈𝑖) = 𝑎0 + ∑ 𝑎𝑖1
Г1(𝑈𝑖1

) + ∑ ∑ 𝑎𝑖1𝑖2
Г2(𝑈𝑖1

, 𝑈𝑖2
) 

𝑖1

𝑖2=1
𝑛
𝑖1=1

𝑛
𝑖1=1   

            + ∑ ∑ ∑ 𝑎𝑖1𝑖2𝑖3
Г3(𝑈𝑖1

, 𝑈𝑖2
, 𝑈𝑖3

)
𝑖2

𝑖3=1
𝑖1

𝑖2=1
𝑛
𝑖1=1 + ⋯   

            + ∑ ∑ …
𝑖1

𝑖2=1
𝑛
𝑖1=1 ∑ 𝑎𝑖1𝑖2…𝑖𝑛

Г𝑛(𝑈𝑖1
, 𝑈𝑖2

, … 𝑈𝑖𝑛
)

𝑖𝑛−1

𝑖𝑛=1          [2] 

 
 

In the above, F is the factor of safety and Ui is the 
particular combination of standard normal random 
variables in a simulation. The coefficient vector 𝒂 must be 
determined. 

 
Step 3: Use a small number of computations to determine 
the coefficients of the polynomial in Step 2. 
 
If n random variables are defined, the number of 
simulations required to be computed (N) is calculated as 
shown in Equation 3.  
 
 
𝑁 =  2(1 + 3𝑛 + 3𝑛(𝑛 − 1)/2 + 𝑛(𝑛 − 1)(𝑛 − 2)/6)       [3] 
 
 

These N computations are generated using Latin-
Hypercube sampling (Choi et al., 2004) to ensure that the 
solution space is well-covered. They are then used to 
determine the polynomial coefficients associated with each 
variable or variable combination, 𝒂. 

Step 4: Generate Latin-Hypercube samples and plug them 
into the polynomial to estimate FS 

In this study, the number of samples required are sampled 
for each random variable using Latin-Hypercube sampling. 
Since the coefficients, 𝒂, have already been determined, 
the samples must simply be multiplied by 𝒂, to obtain the 
predicted FS for each simulation. The PF is estimated from 
these predicted FS values. 
 
2.2 Locally Informed Particle Swarm with Radius 
Filter (LIPS-R) 
 
In 1995, a new evolutionary computation technique named 
particle swarm optimization (PSO) was proposed by 
Kennedy and Eberhard (1995). It is an algorithm inspired 
by the movement of organism in a bird flock and is widely 
used to solve unimodal optimization problems.  At the 
beginning of PSO, n particles are generated, each with 
randomized position and velocity.  At each iteration j, all n 
particles’ velocity and position will be updated.  In original 
PSO, particles’ velocity and position are updated according 
to equation 4 and 5:   

𝑉𝑖𝑑 = 𝑉𝑖𝑑  +  𝑐1 ∗ 𝑟𝑎𝑛𝑑() ∗ (𝑃𝑏 − 𝑋) 
                            +𝑐2 ∗ 𝑟𝑎𝑛𝑑() ∗ (𝑃𝑔 − 𝑋)                  [4] 

 
 

𝑋𝑛𝑒𝑤 = 𝑋 + 𝑉𝑖𝑑                                                          [5] 
 
 

Where X is the particle’s current position, V is the 
velocity.  𝑃𝑏 is the particle’s personal best position, “pbest” 
and 𝑃𝑔 is the global best position, “gbest”.  c1, c2 are both 

constants and 𝑟𝑎𝑛𝑑() is a randomly generated number in 
the range [0, 1].   

If the newly updated particle has better position than 
previous personal best or global best, the information will 
be updated accordingly.  At the end of all iterations, PSO 
returns the global best particle, which represents the global 
optimum found by the algorithm.  

In 1998, Shi and Eberhard published a modified particle 
swarm optimizer. This modified PSO introduced the 
concept of inertia weight, w (Shi et al. 1998) to balance 
local and global search ability. In this popular variant of 
PSO, particles are manipulated according to equation 6 
and 7: 
 
 

𝑉𝑖𝑑 = 𝑤 ∗ 𝑉𝑖𝑑 + 𝑐1 ∗ 𝑟𝑎𝑛𝑑() ∗ (𝑃𝑏 − 𝑋) 
                            +𝑐2 ∗ 𝑟𝑎𝑛𝑑() ∗ (𝑃𝑔 − 𝑋)                   [6] 

 

 
𝑋𝑛𝑒𝑤 = 𝑋 + 𝑉𝑖𝑑                                                            [7] 
 
 

In the past decades, PSO has been proven to be 
efficient in solving unimodal problems. However, for many 
real-world problems, it is often desirable to find several 
local optima. To achieve such a goal, niching methods 
were introduced. Niching methods are equipped with 
population-based algorithms to solve multi-modal 
optimization problems (Li at el. 2017). Some of the famous 
niching PSO methods that have been developed are ring-
topology-based niching PSO (Li 2010) and the Fitness-
Euclidean distance Ratio (FER-PSO) (Li 2007). 

In 2012, Qu proposed a distance-based locally 
informed particle swarm (LIPS) optimizer where instead of 
using the gbest and pbest, the particles are updated using 
information from neighbour particles “nbest.” At the 
beginning of each iteration, the current particle’s 
neighbours, “nbest” are calculated in terms of Euclidean 
distance. The velocity is then updated using information 
from all the nbests. This allows LIPS to eliminate the need 
to introduce additional niching parameters while obtaining 
the ability to form stable niches (Qu at el. 2012).  

The proposed algorithm (LIPS-R) inherits the key 
concepts from LIPS with an additional radius filter. This 
filter allows LIPS-R to return optima (niches) that are at 
least some distance away from each other. At the 
beginning of each iteration, LIPS-R calculates the 
Euclidean distance between the current particle’s position 
to each of its neighbours. The two closest neighbours’ 
positions are N1 and N2. The particle’s velocity is then 
updated using the formula given by equation 8 and 9: 



 

𝑉 = 𝑤 ∗ ( 𝑉 +  𝑐1 ∗ 𝑟𝑎𝑛𝑑() ∗ (𝑁1 − 𝑋) 
         +𝑐2 ∗ 𝑟𝑎𝑛𝑑() ∗ (𝑁2 − 𝑋))                                      [8] 

 
 

𝑤 =  
2

|2−𝑐−√𝑐2−4𝑐|
                                                          [9] 

 
 

c1, c2 are both constants, typically set to 2.05 and c = 
c1+c2 (Li 2006).  k is also a constant, typically set to 1.  

At the end of max iterations, LIPS-R sorts all particles 
by its fitness value. It then filters the results by r, where r is 
defined by equation 10. 

 
 

r = √(𝑚𝑎𝑥 − 𝑚𝑖𝑛)2 ∗ 𝑝                                               [10] 

 
 

Max and min mark the border of the search space and 
p is a user-defined parameter between [0,1]. When set to 
0.1, it suggests that the user would like each optimum to 
be at least 10% of the search space away from others.   

Once r is calculated, the radius filter works as follows: 
let P be the vector that stores all the sorted particles, let n 
be the total number of particles and let T be a vector 
housing only the lowest FS particle. For each particle 𝑃[𝑖], 
check the Euclidean distance between 𝑃[𝑖] and particles in 
T.  If the particle’s position is within distance r of particles 
in T, ignore it.  Otherwise, push 𝑃[𝑖] to T. 

LIPS-R then returns T to user, which contains all the 
optima that are at least r distance apart from each other.  

 
 

3 EXAMPLE 
 
The model considered in this study is shown in Figure 1. 
The slope consists of three layers of cohesive-frictional 
materials, each modeled using Mohr-Coulomb strength.  

A deterministic analysis was first computed using the 
parameters shown in Figure 1, with Spencer’s LE method. 
The search method used was Particle Swarm Optimization 
with local Surface Altering Optimization. 

 
 

 
Figure 1. The geometry and parameters of the slope model 
considered in this study. 
 
 

The results of the deterministic analysis are shown in 
Figure 2. The critical failure surface was found to be 
towards the top of the slope and resulted in an FS of 0.99. 

 
 

3.1 Probabilistic Analysis with SRS 
 
In the probabilistic analysis, each material layer was 
considered to have variability associated with it in the 
cohesion and friction angle variables. These random 
variables are listed in Table 2. For the first layer, for 
example, instead of considering a fixed cohesion of 5 kPa, 
a distribution of cohesion values was considered with a 
mean of 5 kPa and a standard deviation of 2 kPa, following 
a lognormal distribution.  
 
 

 
Figure 2. Results of deterministic analysis: FS=0.99. 
 
 
Table 2. Random variables considered in probabilistic 
analysis. All variables follow a lognormal distribution. 
 

Material Property Mean 
Standard 
Deviation 

Stratum I 

Cohesion (kPa) 5 2.0 

Friction Angle (o) 26 5.2 

Stratum II 

Cohesion (kPa) 8 3.2 

Friction Angle (o) 30 6.0 

Stratum III 

Cohesion (kPa) 6 2.4 

Friction Angle (o) 18 3.6 

 
 

The number of samples computed was 5000 using 
Latin-Hypercube sampling, and the same LE method 
(Spencer) and search method (PSO with SAO) as in the 
deterministic case. 

The results of the probabilistic analysis using both pure 
Latin-Hypercube (LH) sampling as well as SRS are shown 
in Figure 3 and Table 3.  

Figure 3a shows the results of the LH analysis while 
Figure 3b shows that of the SRS analysis. In both parts of 
Figure 3, all critical surfaces found in each simulation of the 
probabilistic analysis are shown on the slope. It can be 
seen that in addition to the critical deterministic failure 
surface, there is another region where many critical 
surfaces were found in various simulations, with FS values 



 

primarily below 1.0 (see legend in Figure 3). Per Equation 
3, although 5000 FS values were computed with SRS, only 
168 actual analyses were computed to train the model and 
predict all the FS values. As such only these surfaces are 
displayed in Figure 3b. It is notable that the critical regions 
found by LH were also found by SRS. 
 
 

a)  

b)  
Figure 3.  Results of Probabilistic Analysis using a) Latin-
Hypercube sampling, and b) Stochastic Response 
Surface. 
 
 

In Table 3, the quantitative results of two methods are 
summarized. It can be seen that the PF and mean FS 
estimated by SRS are in very good agreement with that of 
LH. It is certainly of note however that the computation time 
of SRS (approximately 6 minutes) was about 4% of the LH 
computation time.  
 
 
Table 3. Results of Probabilistic Analysis using Latin-
Hypercube sampling, and Stochastic Response Surface 
with 5,000 simulations. 
  

LH SRS 

PF (%) 50.5 48.8 

Mean FS 1.03 1.01 

Computation time (min) 159.6 5.7 

 
 
3.2 LIPS-R 
 
LIPS-R with SAO were used to compute the results shown 
in Figure 4. By using LIPS-R, the search is not focusing its 

energies on finding the global minimum and has hence 
determined three different failure modes. 

In addition to the FS=0.99 critical failure surface, this 
method also located two other critical surfaces with FS 
values of 1.35 and 1.51. It is interesting to note that the 
FS=1.35 surface appears to be in the same region as the 
surface located by the probabilistic analysis, even though 
the means of arriving at these two regions were entirely 
different. The third critical surface was not located by the 
probabilistic analysis and introduces a new failure mode to 
the model. 

 
 

 
Figure 4. Results of LIPS-R multi-modal search. 
 
 
4 CONCLUSION 
 
Traditional limit equilibrium slope stability analysis methods 
seek to locate one single critical failure surface. However, 
when dealing with real world problems, it is often not 
sufficient to take into account the single worst case. This 
paper has proposed two different methods for obtaining 
more than the singular deterministic critical failure surface: 
probabilistic analysis with stochastic response surface 
(SRS), and locally informed particle swarm with radius 
(LIPS-R).  SRS achieves this by taking into account the 
variability of input parameters. LIPS-R achieves it through  
an algorithm that performs local optimization instead of 
global optimization. 

In addition to the critical deterministic surface, both 
methods located a second failure mode that a deterministic 
analysis would not have been able to locate. The LIPS-R 
algorithm additionally located a third failure mode not found 
by either the deterministic or probabilistic analyses. 

In conclusion, it is not sufficient to account for a single 
critical failure surface in LE slope stability analysis. This 
study has shown that using probabilistic analysis or using 
niching can provide the engineer with critical information 
about potential failure modes that would not be found with 
a simple deterministic analysis. 
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