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ABSTRACT 
Helical piles installed in seismic regions are subjected to the detrimental effects caused by dilatational and shear waves 
traveling through soils. The dilatational wave produces an increase in pore pressure, which leads to a decrease in the 
effective stress and consequently a decrease in the soil shear strength. Furthermore, shear wave propagation produces 
dynamic shear stresses, which are additive to the static shear stresses present in the soil mass prior to the earthquake. 
On this basis, seismic waves produce a decrease in soil resistance and an increase in shear stresses acting in the soil. A 
methodology based on Zeevaert’s theory is presented in the present paper that allows designing helical piles for seismic 
loads, based on the determination of the increase in pore pressure due to dilatational waves and the increase in shear 
stresses due to shear waves.  
 
RÉSUMÉ 
Les pieux hélicoïdaux installés dans les régions sismiques sont soumis aux effets néfastes causés par les ondes de 
dilatation et de cisaillement traversant les sols. L'onde de dilatation produit une augmentation de la pression interstitielle, 
ce qui entraîne une diminution de la contrainte effective et par conséquent une diminution de la résistance au cisaillement 
du sol. De plus, la propagation des ondes de cisaillement produit des contraintes de cisaillement dynamiques, qui s'ajoutent 
aux contraintes de cisaillement statiques présentes dans la masse du sol avant le tremblement de terre. Sur cette base, 
les ondes sismiques produisent une diminution de la résistance du sol et une augmentation des contraintes de cisaillement 
agissant dans le sol. Une méthodologie basée sur la théorie de Zeevaert est présentée dans le présent article qui permet 
de concevoir des pieux hélicoïdaux pour les charges sismiques, sur la base de la détermination de l'augmentation de la 
pression interstitielle due aux ondes de dilatation et de l'augmentation des contraintes de cisaillement dues aux ondes de 
cisaillement. 
 
  
 
1 INTRODUCTION 
 
Helical piles may develop considerable compressive and 
uplift resistances, which make them viable as a deep 
foundation alternative in earthquake regions. The pile 
compressive resistance comprises shaft friction and end 
bearing, and if the helical pile has been manufactured with 
several helices installed relatively close (typically spaced 
apart not more than 3 times the helix diameter), a 
cylindrical shear resistance (CSR) is developed between 
the uppermost and lowermost helices, which also 
contributes to the compressive resistance of the pile. 
Furthermore, the uplift resistance of the helical pile 
comprises shaft friction and upward bearing of the 
uppermost helix. Piles manufactured with multiple helices 
adequately spaced also develop cylindrical shear 
resistance in uplift loading. 

The determination of the compressive resistance of 
helical piles subjected to seismic loads requires assessing 

the effects that dilatational waves and shear waves 
produce in a saturated soil mass. Dilatational waves will 
cause an increment in pore water pressure, which will 
decrease the effective stress, thus reducing the end 
bearing resistance and cylindrical shear resistance (CSR) 
of the helical pile. Furthermore, shear waves propagating 
upwards will produce distortion of the soil layers, causing 
an increase in the soil shear stress, which will reduce the 
CSR available. In addition, the rocking of the 
superstructure will increase the pile loads. Therefore, the 
effects produced by dilatational waves and shear waves 
should be quantified and incorporated to the design of 
helical piles in earthquake regions. The surface (Rayleigh) 
wave is a third type of seismic wave, developed once the 
other waves reach the surface. The effects produced on 
foundations by surface waves are not considered herein.          

Dilatational waves and shear waves are generated 
when the seismic waves produced by earthquakes reach 
the firm ground/soil deposits interphase. The dilatational 



waves travel faster than the shear waves and are the first 
to arrive at the place of observation. The translation of 
dilatational waves requires changes in the soil volume. 
Therefore, dilatational waves develop high pore water 
pressures in saturated soils although they produce small 
displacements. On the contrary, shear waves do not 
produce volume changes in the soil during their 
propagation, but high shear distortions may be induced and 
shear stresses greater than the soil shear strength can be 
developed. 

The objectives of the present paper are: (1) Present a 
methodology based on Zeevaert’s theory (1980, 1982, 
1988 and 1991) to determine the increase in pore water 
and the increase in the soil shear stress due to 
earthquakes; and (2) Apply the methodology to compute 
the compressive resistance of helical piles subjected to 
seismic loads. 

 
2 CONSIDERATIONS 
 
The computation of the compressive resistance of helical 
piles subject to seismic loading is based on the following 
considerations: 
 

(a) It is assumed that the helical piles are 

manufactured with multiple helices, spaced apart 

not more than 3 times the helix diameter. 

 

(b) The helical pile compressive resistance 

comprises end bearing and CSR. The shaft 

friction is considered small and thus can be 

neglected. 

 

(c) An incompressible soil plug will develop inside the 

helical pile.  

 

(d) Shear waves do not produce volume changes or 

pore pressures in the soil during their propagation. 

However, the increase in pore pressure produced 

by the dilatational waves, which arrive first to the 

deep foundation location, is assumed to be still 

present once the shear waves arrive. 

 

(e) The increase in soil shear stress (due to shear 

wave action and due to greater pile loads caused 

by the structure overturning moment) occurs at 

the same time the soil shear strength decreases 

(due to an increase in pore pressure).  

 

(f) Soil is saturated.  

 

(g) The soil layers are not susceptible to liquefaction.  

 

(h) The soil index properties and mechanical and 

dynamic parameters have been determined in 

advance.  

3 METHODOLOGY 
 
3.1 General 
 
The methodology to determine the compressive resistance 
of helical piles subjected to seismic loads requires 
analyzing the combined effects of an increase in soil shear 
stress (due to shear wave action plus greater pile loads due 
to the structure overturning moment) and a decrease in soil 
shear strength (due to an increase in pore pressure).  

The methodology presented in the following sections is 
based on the research carried out by Zeevaert (1980, 1982, 
1988 and 1991).  

 
3.2 Increment in Pore Water Pressure Due to 

Dilatational Wave 
 
The increment in pore water pressure due to dilatational 
waves has been studied by Zeevaert (1991), who 
developed a methodology based on the following rationale:  
 
(a) The dilatational wave propagates from firm ground to 

the surface according to the following equation: 

 

𝑣𝑑
2  

 2𝑤

 𝑧 2
 =  

 2𝑤

 𝑡 2
                             [1] 

 

where 𝑤 is the vertical displacement and 𝑣𝑑 is the 

dilatational wave velocity 

 

(b) From theory of elasticity we know that the soil pressure 

𝜎𝑧 is given by: 

𝜎𝑧 = 𝐸𝑐  
 𝑤

 𝑧
               [2] 

 

where 𝐸𝑐 is the dynamic soil modulus, given by :  

𝐸𝑐 =  2 (1 + 𝜈 )𝜇              [3] 
 

where 𝜈 is the Poisson ratio and 𝜇 is the shear 

modulus, equal to :   

𝜇 = 𝑣𝑑
2 𝜌 

(1−2𝜈 )

2 (1−𝜈 )
                [4] 

 

where 𝜌 is the unit mass of the soil, equal to the soil 

unit weight 𝛾 divided by the gravitational acceleration.  

 

(c) Zeevaert (1991) solves Equation 2 as: 

𝜎𝑧 = −𝐸𝑐  𝑤𝑜  
𝜋

2𝐷
sin(

𝜋

2
 

𝑧

𝐷
)                [5] 

 

where 𝐷 is the depth between the ground surface and 

the firm ground, and 𝑤𝑜 is the vertical displacement 

amplitude, given by :  



𝑤𝑜 =  
4𝐷2

𝜋2  
𝜌

𝐸𝑐
 𝐺𝑎𝑣              [6] 

 

where 𝐺𝑎𝑣  is the maximum vertical ground surface 

acceleration. 

 

(d) Substituting Equations 3, 4 and 6 in 5 we obtain: 

𝜎𝑧 = − (
2

𝜋
 𝐺𝑎𝑣 𝐷 𝜌 ) sin(

𝜋

2
 

𝑧

𝐷
)               [7] 

 

(e) During the earthquake, the increase in soil pressure in 

the saturated soil sediment occurs at constant volume, 

requiring the decrease in soil effective stress to be 

equal to the increase in pore water pressure, 𝜎𝑧 =

−𝑢𝑧 , hence: 

 

𝑢𝑧 = (
2

𝜋
 𝐺𝑎𝑣 𝐷 𝜌 ) sin(

𝜋

2
 

𝑧

𝐷
)                [8] 

 
Equation 8 can be used to determine the increment in 

pore water pressure caused by the dilatational shear wave.   
 

 
3.3 Decrease in End Bearing Resistance Due to 

Earthquake Loading 
 
The increase in pore water will cause a decrease in 
effective stress and thus a decrease in end bearing. On this 
basis, when the helical pile end bearing resistance is 
computed, the pore water determined in Equation 12 
should be subtracted from the vertical effective stress, 
which is then multiplied by the bearing factor Nq and helix 
area (assuming a pile tip plugged condition) to determine 
the pile end bearing resistance.  
 
3.4 Increment in Soil Shear Stress due to Shear Wave 
 
The shear waves propagate from the firm ground 
interphase into the soil deposits, producing important shear 
distortions in the soil mass. These distortions cause an 
increase in shear stress which is additive to the static shear 
stress acting on the soil prior to the earthquake (Figures 1 
and 2). Furthermore, the shear waves are slower than the 
dilatational waves and hence arrive later at the place of 
observation. On this basis, it is considered that the pore 
pressure caused by the dilatational wave has already 
increased by the time the shear waves arrive at the 
foundation.   

The increment in soil shear stress due to shear waves 
has been studied by Zeevaert (1980, 1982, 1988 and 
1991), who presented the following methodology for the 
computation of the shear stress:  
 
(a) The time required by the shear wave to travel through 

the full soil deposit, from firm ground to the surface, is 

equal to ¼ the soil dominant period 𝑇, therefore: 

1

4
𝑇 =  

𝐷

𝑣𝑠
                 [9] 

 

where 𝐷 is the depth between the ground surface and 

the firm ground, and 𝑣𝑠 is the shear wave velocity. In 

stratified soil deposits, Equation 9 is modified as follows: 

1

4
𝑇 = 𝛴𝑖=1

𝑛  
𝑑𝑖

(𝑣𝑠)𝑖
              [10] 

(b) The shear wave velocity is a function of the dynamic 

shear modulus 𝜇 as follows : 

𝑣𝑠
2 =

 𝜇

𝜌
           [11] 

 

(c) The dynamic shear modulus 𝜇 can be determined in 

the field from seismic cone penetration tests, cross-

hole seismic surveys, downhole seismic surveys, or 

other field tests. Alternatively, it may be determined 

through laboratory tests in soil samples, which may 

include resonant column tests, free torsion pendulum 

tests, or other.  

 

 
Figure 1. Shear stress due to shear wave. 
 
 



 
 
Figure 2. Shear stress on helical pile CSR due to shear 
wave 

 

 

(d) The shear wave propagates from firm ground to the 

surface according to the following equation: 

𝑣𝑠
2  

 2𝑢

 𝑧 2
 =  

 2𝑢

 𝑡 2
           [12] 

 

where 𝑢 is the vertical displacement. Since the values 

of 𝜇, 𝜌 and consequently 𝑣𝑠 change for every soil layer, 

Zeevaert (1982), developed an integration method to solve 

Equation 12 as follows: 

(e) The algorithms for the computation of the maximum 

horizontal displacements 𝑖 and the corresponding 

shear stresses 𝑖  in each soil layer for the ground 

motion induced by the shear waves are given by:  

𝑖+1 =  𝐴𝑖  𝑖 −  𝐵𝑖 𝑖                             [13] 
 

𝑖+1 =  𝐶𝑖  (𝑖
+  𝑖+1) +  𝑖                          [14] 

 

where the coefficients have the following values :  

𝐴𝑖 =   
1− 𝑁𝑖

1+ 𝑁𝑖 
        [15] 

 

𝐵𝑖 =   
1

1+ 𝑁𝑖 
(
 𝑖

𝜇𝑖
)          [16] 

 

𝐶𝑖 =
1

2
 𝜌  𝑖  𝜔𝑛

2           [17] 

 

𝑁𝑖 =  
𝜌  𝑖

2 𝜔𝑛
2

4𝜇𝑖
             [18] 

 

and  𝜔𝑛  is the angular frequency of the soil mass, which 

initially can be computed from the soil period as follows: 

𝜔𝑛 =  
2𝜋

𝑇
               [19] 

 
(f) The calculations start by computing a ground surface 

displacement 1 equal to : 

1 =  
𝐺𝑎𝑣

𝜔𝑛
      [20] 

 

and assume that the increment in shear stress at the 

ground surface due to the shear wave is zero (1  = 0).   

 

(g) Subsequently, Equations 13 and 14 are computed for 

each soil layer starting from the ground surface, using 

the coefficients in equations 15 to 18.    

(h) When the calculations reach firm ground, the 

horizontal displacement computed should be zero. If 

this is not the case, the angular frequency initially 

assumed in Equation 19 should be corrected and a 

new iteration undertaken from the ground surface to 

the firm ground.  

3.5 Increment in Soil Shear Stress due to 
Superstructure Overturning Moment Transferred to 
Piles 

 
The rocking of the superstructure will increase the 

compressive loads acting on the piles. The increase in load 

may be determined from dynamic structural analyses, 

applying methods included in Building Codes. 

An approach applicable when a rigid superstructure is 

supported on a rigid mat or box foundation supported by 

helical piles is shown in Figure 3.  It is assumed that the 

underside of the foundation slab is not in contact with the 

soil underneath, therefore the vertical loads acting on the 

structure are directly transferred to the helical piles. 

As a result of an earthquake, a horizontal seismic shear 

force 𝑉𝑀  will be produced on a structure, acting on its 

center of mass located on a height ℎ𝑀, producing a seismic 

overturning moment 𝑂𝑇𝑀   as shown in Figure 3.  The 

overturning moment will produce dynamic loads on the 

piles, which will be additional to the static loads previously 

acting.   

The procedure to determine the horizontal seismic 
shear force acting on the structure is included in Building 
Codes. The present Section does not summarize any 
procedure, rather it is assumed that the overturning 
moment has already been computed.    



On this basis, the increase in pile load 𝛥𝑃𝑖  due to 
earthquake can be determined using the following 
equation:   
 

𝛥𝑃𝑖 =  
𝑀𝑦  𝑥

𝛴 𝑥2 + 
𝑀𝑥 𝑦

𝛴 𝑦2        [21] 

where  𝑀𝑦 and 𝑀𝑥 are the factored overturning 

moments due to earthquake loading and 𝑥  and  𝑦  are the 
distances of the piles to the center of gravity of the 
foundation. On this basis, the increase in the shear stress 
between the helices 𝛥𝐶𝑆𝑅 due to the increase in pile load 

𝛥𝑃𝑖  due to earthquake is:  
 

𝛥𝐶𝑆𝑅 =  
𝛥𝑃𝑖 

𝜋 (𝐷ℎ) (𝑆ℎ)
       [22] 

where Dh is the helix diameter and Sh is the distance 
between the uppermost and lowermost helices.  
 
3.6 Seismic CSR Resistance  

 
The pile compressive resistance comprises shaft friction 
(often negligible), end bearing and CSR. The CSR applies 
to helical piles manufactured with multiple helices spaced 
not more than 3 times the helix diameter. The vertical 
displacement of a helical pile subjected to service 
conditions will typically be sufficient to develop full 
mobilization of shaft friction, partial mobilization of CSR, 
and small mobilization of end bearing, which requires 
relatively large displacements to fully develop. On this 
basis, a conservative assumption is that the CSR alone will 
have to resist the increase in pile load, which therefore 
requires the allowance of additional CSR resistance when 
helical piles in seismic regions are designed.  
 

 
Figure 3. Pile loads due to overturning moment  
 
 

 
 
Figure 4. Shear stress increase acting on CSR    
 
 
 
 

Once the decrease in soil shear strength and the 
increase in the soil shear stress due to earthquakes has 
been determined, the next step is to carry out laboratory 
tests to find out if the soil has adequate resistance to 
develop the necessary CSR to support the seismic loads. 
Triaxial cyclic tests or direct shear tests (cyclic or 
conventional) may be carried out. Direct shear tests are 
particularly desirable since the distortion produced in the 
soil sample during the test resembles the distortion of the 
soil between the helices when a helical pile is loaded in the 
field. The use of direct shear test results to understand the 
development of CSR under static loading has been applied 
by Padros (2013-1 and -2).   

The shear stresses in the field and in a direct shear test 
are shown in Figure 4, where 𝛥𝑠𝑤  is the additional soil 
shear stress due to the shear waves and 𝛥𝑂𝑇𝑀  is the 
additional soil shear stress due the increase in pile loads 
caused by the overturning moment acting on the 
superstructure. The confinement effective stress between 
the helices is 𝜎𝑐 . Furthermore, the dilatational wave 
produces an increase in pore pressure, which leads to a 
decrease in the confinement effective stress 𝛥𝜎𝑐  . 
Therefore, the direct shear test is carried out applying a 
compressive effective stress  𝜎𝑐 − 𝛥𝜎𝑐  . In that test, the 
total increase in shear stress due to sesimic loads is 
𝛥𝑠𝑤  +  𝛥

𝑂𝑇𝑀 
, which has to be compared with the 

maximum shear resistance of the soil.    
 
 



4 EXAMPLE OF DETERMINATION OF 
COMPRESSIVE RESISTANCE OF HELICAL PILE 
SUBJECTED TO SEISMIC CONDITIONS 

 
4.1 General 
 
An example is presented to illustrate the computation of the 
compressive resistance of a helical pile subjected to 
seismic conditions. The example considers a rigid 
superstructure on a rigid shallow foundation supported by 
helical piles, as shown in Figure 5. The ULS and SLS static 
compressive loads on each pile are 30 ton and 21 ton, 
respectively. The overturning moments in the X and Y 
directions due to the horizontal seismic shear forces are 
500 ton·m and 300 ton·m, respectively. A maximum vertical 
ground surface acceleration 𝐺𝑎𝑣 of 1 m/sec2 is considered. 
The subsurface conditions comprise granular and cohesive 
soil layers extending to 15.5 m depth, where firm ground is 
encountered. The groundwater level is located at the 

ground surface. The unit weight 𝛾 and the shear strength 
parameters (undrained shear resistance Cu and angle of 
internal friction φ) of each soil layer are presented in Table 
1, which also includes the shear wave velocity determined 
from Seismic Cone Penetration Tests.   

All helical piles have the same size, consisting of a 273 
mm shaft diameter and two helices 762 mm diameter, 
located at 7.74 m and 9.26 m depth (helix spacing is 1.524 
m). The piles’ head is at 1 m depth, pinned to the slab. The 
piles’ length is 8.6 m.   
 
 
 
Table 1. Soil properties and parameters 
 

Layer z (m) 
Soil 

Type  

𝛾 
(ton/
m3) 

Vs 
(m/s) 

Cu 
(ton/
m2) 

φ  
(deg) 

A 0–4 Sand 1.80 110 0 28 

B 4–6.5 Clay 1.85 40 25 0 

C 
6.5– 
10.5 

Sand 1.90 105 0 30 

D 
10.5–
13.0 

Clay 1.85 60 25 0 

E 
13.0–
15.5 

Sand 1.90 100 0 32 

 

 
 

 

                  
Figure 5.  Building and soils conditions used in example   
 
 

The unfactored compressive resistance Qc of the 
helical pile is 125 ton, comprising a QCSR of 18 ton, an end 
bearing Qeb of 107 ton and neglecting the shaft friction. 
Based on CFEM, applying a geotechnical resistance factor 
of 0.4 for deep foundations, the resulting factored 
compressive resistance ΦQc is 50 ton, adequate to support 
the ULS compressive load of 30 ton. 
4.2 Considerations 
 
The considerations included in Section 2 are applicable. 
Additional considerations comprise the following: 
 

(a) Rigid superstructure on a rigid shallow foundation. 

 

(b) The vertical loads acting on the structure are 

directly transferred to the helical piles (hence no 

contact between the underside of the rigid shallow 

foundation and the soil). 

 



(c) The static SLS load acting on each pile is 21 ton. 

It is considered that a small vertical pile 

displacement is developed under service 

conditions, sufficient to fully mobilize the CSR. On 

this basis, the end bearing mobilized under SLS 

conditions is equal to 21 ton – 18 ton = 3 ton. It is 

noted that the size selected of the helical piles 

does not allow for additional CSR resistance in 

case of seismic loading.  

 

(d) The vertical effective stress at mid-height 

between the helices (8.5 m depth) under static 

conditions is 7.1 ton/m2 + 4.9 ton/m2 = 12.0 

ton/m2, where 7.1 ton/m2 is the vertical stress prior 

to pile installation and 4.9 ton/m2 is the increase 

in vertical stress caused by the loaded pile under 

SLS conditions.   

 

(e) The confining effective stress increases in the 

proximity of the pile after this has been installed. 

On this basis, the confining effective stress at mid-

height between the helices under static conditions 

is considered equal to about 1.2 times the vertical 

effective stress (therefore equal to 8.7 ton/m2).   

 

(f) The shear stress acting in the soil on vertical 

planes between the helices under static pile 

loading conditions was calculated as (12  ton/m2 

– 8.7 ton/m2)/2 = 1.65 ton/m2 

 
4.3 CSR Computation 
 

(a) Initial calculations 
 

The shear modulus and the ratios 
𝑑𝑖

(𝑣𝑠)𝑖
 are presented in 

Table 2. From that Table and Equations 10, 19 and 20 we 
obtain the soil period T = 0.82 sec, angular frequency 𝜔𝑛 = 
7.7 sec-1 and ground surface displacement 1 = 0.017 m.    
   
Table 2. Soil mass, shear modulus and di/(Vs)i ratios 
 

Layer 
di        

(m) 

ρ 
(ton·sec2

/m4) 

µ             
(ton/m2) 

di/(Vs)i 
(sec) 

A 4 0.184 2,225 0.036 

B 2.5 0.189 300 0.063 

C 4 0.194 2,140 0.038 

D 2.5 0.189 680 0.042 

E 2.5 0.194 1,940 0.025 

 
 

(b) Increment in pore pressure caused by dilatational 

wave 

The increment in pore water pressure is computed from 

Equation 8, considering an average unit mass of the soil 𝜌 
equal to 0.190 ton·sec/m4. Substituting the parameters in 
Equation 8, we obtain the increment in pore water pressure 
caused by the dilatational wave, using the equation below. 
The results are summarized in Table 3. 
 

𝑢𝑧 = [
2

𝜋
 (1 

𝑚

𝑠𝑒𝑐2
)  15.5 𝑚 (0.190 

𝑡𝑜𝑛 ∙ 𝑠𝑒𝑐2

𝑚4
 ] sin (

𝜋

2
 

𝑧

15.5 𝑚
) 

 

𝑢𝑧 = 1.87 sin(
𝜋 𝑧

31
 ) 

 
Table 3. Increment of pore water pressure due to 
dilatational waves 
 

z 
(m) 

Uz 

(ton/m2) 
z 

(m) 
Uz 

(ton/m2) 
z 

(m) 
Uz 

(ton/m2) 

0 0 8 1.36 12 1.75 

2 0.38 8.5 1.42 14 1.85 
4 0.74 9.3 1.51 15.5 1.87 
6 1.07 10 1.59   

       
(c) Increment in soil shear stress due to shear wave 

 

From Equation 20 the ground surface displacement 1 = 
0.017 m is obtained. In accordance with the method 
hypothesis, the increment in shear stress at the ground 
surface due to the shear wave is zero (1  = 0).  
Subsequently, Equations 13 and 14 are computed for each 
soil layer starting from the ground surface, using the 
coefficients in Equations 15 to 18. The results are included 
in Table 4. The computation results indicate that the 
horizontal displacement computed at firm ground is zero, 
which indicates that the angular frequency initially assumed 
in Equation 19 is correct, and there is no need to carry out 
another iteration.    
 

(d) Increment In soil shear stress due to overturning 
moment transferred to piles  
 

The increase in pile load 𝛥𝑃𝑖  due to earthquake condition 

is computed using Equation 21, considering 𝛴𝑥2 = 𝛴𝑦2 = 

1,800 m2. The maximum increase will occur in two corner 

piles (designated No’s. 5 and 21 in Figure 5), obtaining  𝛥𝑃𝑖  

= ± 5.3 ton in each of them.  

Consequently, the increase in the shear stress between 

the helices due to the increase in pile load 𝛥𝑃𝑖  due to 
earthquake is: 

𝛥𝐶𝑆𝑅 =  
𝛥𝑃𝑖 

𝜋 (𝐷ℎ) (2 𝐷ℎ)
 =

5.3 𝑡𝑜𝑛

𝜋 (0.762 𝑚) (2 · 0.762 𝑚)
   

𝛥𝐶𝑆𝑅 =  1.45 
𝑡𝑜𝑛

𝑚2     

 
(e) Computation of total CSR increase 

 
The total increase in shear stress acting on vertical planes 
between the helices 𝛥𝐶𝑆𝑅𝑇𝑂𝑇𝐴𝐿 comprises the increase in 
shear stress due to shear wave action and due to greater 



pile loads caused by the structure overturning moment, 
therefore: 
 

𝛥𝐶𝑆𝑅𝑇𝑂𝑇𝐴𝐿 = 1.27 
𝑡𝑜𝑛

𝑚2
+  1.45 

𝑡𝑜𝑛

𝑚2
=  2.72 

𝑡𝑜𝑛  

𝑚2
   

 
As mentioned in Section 4.2 consideration (f), the initial 

shear stress acting on the soil under static conditions (on 
vertical planes between the helices) is 1.65 ton/m2. 
Therefore, the total CSR adding the static plus the dynamic 
increment is: 

 

𝐶𝑆𝑅𝑇𝑂𝑇𝐴𝐿 = 1.65 
𝑡𝑜𝑛

𝑚2
+  2.72 

𝑡𝑜𝑛

𝑚2
=  4.37 

𝑡𝑜𝑛  

𝑚2
   

 
In order to determine the effect that the increase in pore 

pressure has in the shear resistance, direct shear tests can 
be carried out in representative soil samples retrieved from 
the soil layers where the helices will be located. In the 
present example, the results from direct shear tests 
undertaken in a sample obtained from layer C are shown in 
Figure 6. The figure shows that compressive stress of 8.7 
ton/m2 resulted in a shear strength of 5 ton/m2, 

corresponding to Φ = 30 degrees. The results of a second 
direct shear test where the increase in pore pressure was 
deducted from the compressive stress are also shown (i.e, 
8.7 ton/m2 – 1.42 ton/m2 = 7.28 ton/m2), which resulted in 
a shear strength of 4.2 ton/m2, for the same Φ = 30 
degrees. It is noted that the CSR exceeds the shear 
strength under earthquake loading (4.37 ton/m2 > 4.2 
ton/m2) which means that the pile will have to rely on end 
bearing to support the earthquake compressive load.   

 

𝑄𝐶𝑆𝑅𝑆𝐼𝑆
= 4.2 

𝑡𝑜𝑛

𝑚2  𝜋 (0.762 𝑚) (2 ·  0.762 𝑚)         

 

𝑄𝐶𝑆𝑅𝑆𝐼𝑆
= 15.3 𝑡𝑜𝑛                

Note that 15.3 ton < 18 ton. As an alternative to 

increase QCSR and QCSRSIS, the helix spacing could be 

increased to 2.5Dh or 3 Dh, or a third helix could be added. 
 

 

 
 
Table 4. Computation of increment of soil shear stress and displacements due to shear wave 
 

Depth 
(m) 

Layer 
di 

(m) 
ρ 

(ton·sec2/m4) 
µ             

(ton/m2) 
Ni   

x10-3 
Ai 

Bi 
x10-3 

Ci 
(ton/m3) 

δi  
(m) 

τi            
(ton/m2) 

0         0.017 0 

 A 4 0.184 2,225 19.6 0.96 1.76 21.82   

4         0.016 0.73 

 B 2.5 0.189 300 58.4 0.89 7.87 14.01   

6.5         0.009 1.08 

 C 4 0.194 2,140 53.7 0.99 0.93 11.50   

10.5         0.006 1.43 

 D 2.5 0.189 680 25.8 0.95 0.35 14.01   

13         0.001 1.54 

 E 2.5 0.194 1,940 9.3 0.98 1.28 14.38   

15.5         0.000 1.54 

           

 
(f) Computation of Seismic End Bearing  

 
The seismic end bearing QebSIS is computed by 
deducting the increment in pore pressure as follows: 
 

𝑄𝑒𝑏𝑆𝐼𝑆 = 𝑁𝑞(𝜎𝑧 − 𝑢𝑧  )𝐴ℎ                            [24] 

where σZ = 7.81 ton/m2 at 9.3 m depth. From Table 
3, Uz = 1.51 ton/m2. Nq is the bearing factor, equal to 30 
(Zeevaert 1982) for Φ = 30 degrees. Furthermore, the 
helix area Ah is determined for a helix diameter of 762 
mm, assuming a pile tip plugged condition.  Equation 24 
results in QebSIS = 86.2 ton, which is about 20% smaller 
than the static 107 ton.  

 
(g) Compressive Resistance of Helical Pile 

Subjected to Seismic Load  
 

The seismic compressive resistance is determined by 
adding the seismic CSR and end bearing, as follows:  
 

𝑄𝐶𝑆𝐼𝑆
= 15.3 𝑡𝑜𝑛 + 86.2 𝑡𝑜𝑛 = 101.5 𝑡𝑜𝑛     

 

𝛷𝑄𝐶𝑆𝐼𝑆
= 40.6 𝑡𝑜𝑛 > 30 𝑡𝑜𝑛  



 

 
 
Figure 6. Shear stress computation based on the results 
of a direct shear test. 
 
5 CONCLUSIONS 

 
1. The determination of the compressive 

resistance of helical piles subjected to seismic 
loads requires assessing the effects that 
dilatational waves and shear waves produce in 
a saturated soil mass. 
 

2. Increases in shear stress result from the 
propagation of seismic shear waves and due to 
the increase in pile loads caused by 
superstructure overturning moments. 
Additionally, the dilatational wave produces an 
increase in pore pressure, causing a decrease 
in the effective stress and consequently a 
decrease in the soil shear strength. 
 

3. The increase in shear stress due to the shear 
wave and the decrease in shear strength due to 
the dilatational wave can be determined by 
applying Zeevaert’s theory. The methodology 
to determine the increase in pile loads caused 
by the seismic overturning moment can be 
found in Building Codes.  
 

4. The CSRSIS resulting from the increase in shear 
stress due to the shear wave in combination 
with the reduction in shear strength due to the 
increase in pore pressure can easily be smaller 
than the soil shear strength acting on vertical 
planes between the helices of the loaded pile, 
resulting in a greater load transferred to the 
lowermost helix, increasing the demand for end 
bearing resistance, which simultaneously is 
reduced due to the increase in pore pressure.  
 

5. Alternatives to increase the CSRSIS include 

extending the helix spacing up to 3 Dh or 

installing more helices.  

 
6. An example is included to illustrate the 

application of the method.  
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