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PREFACE 

This document is a partial description of the methods and procedures used by Cambridge 
Insitu Ltd (CI) to interpret cavity loading tests carried out using equipment manufactured by 
CI. These devices read pressure changes to better than 0.5kPa  and radial displacement 
changes to better than 0.5 micrometres (5 x 10-7 metres). For a typical cavity this is a strain 
of 10-5. 

Some parts of this document may be applicable to third-party devices but do not assume 
this is the case. 

The text covers all the analyses provided by the WINSITU software program and some 
further procedures that are not yet fully implemented. It uses examples from a wide range 
of sources to illustrate the arguments presented.  

• Part 1 is an introduction and includes a description of how strains are calculated 

• Part 2 concentrates on modulus 

• Part 3 considers how to identify the Insitu lateral stress 
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1 MATERIAL PROPERTIES FROM PRESSUREMETER TESTS IN SOIL 

1.1 Notation 

ρ a small radial displacement 

r any radius 

rc radius of cavity 

ro initial radius of cavity 

pc total pressure applied to cavity wall 

po cavity reference pressure 

Pf total yield stress 

εr  radial strain 

εθ circumferential (hoop) strain 

εc circumferential (hoop) strain at the cavity wall 

cu undrained shear strength 

G shear modulus 

σr  radial stress 

σθ circumferential stress 

1.2 Introduction 

A pressuremeter is one of a small number of tools capable of deriving representative 
parameters for critical engineering properties of dilatant or granular materials. It is unique 
in being able to provide strength and stiffness in a single test episode. The difficulty of the 
test is that these parameters are not directly measured but are discovered by solving the 
boundary value problem.  

1.3 Ménard Pressuremeter 

It is possible to avoid this restriction, at the cost of sacrificing the wider benefits of 
fundamental analysis. The Ménard system uses an approach that converts field data to a 
small number of quasi-parameters specific to the equipment and test procedures. Using 
correlations that have been obtained by relating pressuremeter data to the response of 
finished structures these parameters are inserted directly into semi-empirical design 
equations. 

Avoiding fundamental analysis reduces the significance of the individual test. Essentially a 
Menard result is a superior version of a blow-count obtained from a Standard Penetration 
Test (SPT). Like the SPT, multiple tests at fairly closely-spaced levels are required in order to 
quantify the uncertainty.  



Because of the method specificity there is no incentive to innovate the probe. It remains 
much as it did at its inception in 1957, a passive measuring device that makes comparatively 
coarse determinations of volume change.  

The Ménard approach will not be considered any further here although it is as well to be 
aware that the overwhelming majority of pressuremeter tests carried out still use 
equipment and methods based on Ménard practice.  

1.4 Disturbance 

The aim of the pressuremeter test is to expand a long cylindrical cavity within an 
undisturbed mass of soil. Readings are taken of the pressure applied to the cavity wall and 
the consequent displacement. A modern pressuremeter test is a set of hundreds of co-
ordinates that define a loading and unloading curve. 

In practice no instrument can be placed into the ground without affecting the surrounding 
soil. In the case of a self-bored pressuremeter test the disturbance is less than that required 
to make the material yield (less than 1% shear strain) and is straightforward to allow for in 
the analysis procedure. This is an unusual situation in the context of soil investigation and 
most pressuremeter testing involves more disruptive means of getting an instrument into 
the ground that cause the material to fail either in extension or contraction. Once the 
material fails, the consequences for the test are irreversible. If the zone of disturbed 
material remains thin in relation to the expansion capability of the system, as is often the 
case for pre-bored testing, it may be possible eventually to see loading data that is a 
function of the true stress/strain properties of the material . If the material has been pushed 
then no amount of expansion will ever achieve this state – the best that can be achieved is 
reaching a limiting stress condition for an indeterminate strain. This is the case for devices 
such as a Cone Penetrometer (CPT), SPT and Cone Pressuremeter (CPM).  

Irrecoverable disturbance is not the same thing as saying sensible parameters cannot be 
obtained from the test. Regardless of how the hole has been formed, it is always possible to 
expand the zone of disturbed material even further and in the process of doing so put every 
element of soil in that zone into a uniform plastic state. The insertion effects are then over-
written and importantly, at single boundary remote from the cavity wall the material will be 
on the point of yielding. If the direction of loading is now reversed and the cavity forced to 
contract, then all the co-ordinates of pressure and displacement seen at the cavity wall will 
be a function of the remote boundary unloading elastically and eventually plastically if the 
contraction is continued. Assuming that the resolution of the measuring system is sufficient 
to see elastic movement, then using this technique means that a pushed test and a self-
bored test are capable of providing similar quality results for stiffness and strength.  

The primary reason for using self-boring instead of more invasive techniques is that to a 
large extent the initial stress state is preserved and the possibility of directly determining 
the horizontal geostatic stress σho becomes available. This is harder to accomplish with more 
disruptive insertion methods. Invasive techniques are also more dependent on the applied 
solution being appropriate. The self boring test is able to assess the uncertainty of that 
assumption.  

  



1.5 The pressuremeter test in soil - initially elastic response/failure in shear.  

Solving the cylindrical cavity boundary problem means identifying the radial and 

circumferential strains εr and εθ, and the radial and circumferential effective stresses σr and 
σθ. Given any three, the fourth can be calculated. If the four parameters are known for one 
boundary, then they are calculable for all. For the boundary that is the cavity wall, εθ and σr 
are obtained directly from measurements the pressuremeter provides of radial 
displacement and total pressure. 

Consider that the soil is homogeneous, and shows simple elastic behaviour before failing in 
shear. The stress path followed by an element of soil adjacent to the cavity is given in Figure 
1.1 and the corresponding pressure/strain curve is shown alongside.  

The radial stress, ideally at the insitu horizontal stress for a perfect installation, increases at 
the same rate as the circumferential stress decreases, regardless of whether the material is 
deforming under plane strain or plane stress conditions. The line 0 - 0 represents stress 
equality, so that in the ideal case considered here the point P0  is the insitu lateral stress σho. 

Once the radial stress increases above P0 then the shear stress in the soil at the cavity wall 
will increase. If P0 is low, then it is possible that the circumferential stress would go into 
tension. The characteristic of soils is that the insitu stress is high enough to ensure that the 
shear stress limit is reached before tensile stresses can be generated. Tensile failure, as may 
be seen in rock, therefore implies comparatively low values for the initial stress state 
compared to the shear strength. 

The pressure necessary to initiate shear failure is denoted pf in fig 1. After this pressure the 
current slope of the field curve reduces steadily. The form of this part of the pressure/strain 
curve is a function of the shear strength of the material. 

After the initial shear failure,  radial stress and circumferential stress increase together. If 
the shear stress limit is constant, and is not influenced by pressure, and if the material 
deforms at constant volume then the failure shear strength can be determined by the 
analytical solution developed by Gibson & Anderson (1961). If the shear stress limit 

 Figure 1.1  Elastic Response followed by failure in shear 

 

 



increases as the loading develops then the solution of Hughes et al (1977) could be applied 
to discover the internal angle of friction and dilation. 

Prior to reaching the shear stress limit, the pressuremeter response is elastic, both in 
loading and unloading. Assuming the soil deforms at a constant modulus and the installation 
is perfect then the slope of the initial loading path gives the shear modulus of the material, 
using the classic procedure of Bishop, Hill & Mott (1945). The diagram also indicates that 
reversing the direction of loading causes an initial elastic response giving an alternative 
means of deriving the shear modulus. This implies that small cycles of unloading and 
reloading taken anywhere in a test after reaching the shear stress limit can be used as a 
source of stiffness information (Hughes 1982). 

As fig 1.1 indicates, the complete unloading of the pressuremeter can also be used to give 
strength and stiffness parameters comparable with those obtained from the loading path.  

From the right hand side of the stress diagram it is apparent that the pressuremeter 
provides only a limited set of the necessary information for resolving the stresses and 
strains around the probe. Specifically it gives the changes in radius of the borehole wall (a 
special case of hoop strain) and the corresponding changes in radial stress at the borehole 
wall. There are no data for hoop stress or radial strain or movements in the vertical 
direction. Test procedures are chosen to allow the missing data to be inferred – for example 
an undrained expansion means shearing occurs at constant volume and hence changes of 
radial strain must be equal and opposite to changes in hoop strain. The unseen vertical axis 
data are rendered insignificant by making pressuremeters long with respect to their 
diameter, allowing plane strain expansion to be assumed. 

1.6 Strain definitions 

Fig 1.2 Stresses and strain around expanding cavity TERMS 

ρ  is a small radial displacement 

r    is any radius 

rc   is radius of cavity 

ro   is initial radius of cavity 

pc  is pressure applied to cavity 
wall 

po  is cavity reference pressure 

εc   is circumferential (hoop) 
strain at the cavity wall 

 

 

1.6.1 Simple strain 

For a pressuremeter measuring the radius of an expanding cavity the conversion from 
displacement to simple strain is : 



 ε = [rc-r0]/r0  [1.1] 

where rc is the current radius of the cavity 

 r0 is the original radius of the cavity in the insitu state. 

ε is normally written c to denote cavity strain. This is a particular case of circumferential or 

hoop strain. c is often expressed as a percentage and by convention increases in the 
positive direction as the cavity enlarges. The physical reality is that hoop strain reduces as 
the cavity radius increases.  

For a self bored cavity r0 can be approximated by the at-rest radius of the instrument. This is 
unlikely to be the case for a stress relieved pocket. In general the approach then is to 
identify when the applied pressure has reached the insitu lateral stress, and interpolate 
from this the corresponding radius, which becomes r0. As the analysis process goes through 
stages of iteration r0 is likely to be re-defined again. 

1.6.2 Current cavity strain 

Current cavity strain is given by: 

 [rc-r0]/rc  [1.2] 

using the same terminology as above. This takes some account of alterations to the length 
of the displacement reference. 

1.6.3 True or natural strain 

If strains are small enough then the variation in the length of the displacement reference is 
insignificant. This is not the case for a pushed pressuremeter test which will result in the 
material experiencing very large strains. It is necessary then to use true or natural strain to 
describe the cavity deformation. This is the sum of the incremental increase in radius 
divided by the current radius: 

 =  𝐿𝑛[𝑟𝑐/𝑟0]  =  𝐿𝑛[1 + c].  [1.3] 

Note – 

When carrying out unload/reload cycles the calculation for shear modulus G is 
approximately 

2𝐺 = [
Δ𝑝𝑐

Δ𝜀𝑐
] 

 [1.4] 

As pointed out by Mair & Wood (1987) this approximation is only justified for strains 
derived close to the origin and [1.4] should take account of the changing cavity radius: 

2𝐺 = [
𝑟𝑐

𝑟𝑜
] [

Δ𝑝𝑐

Δ𝜀𝑐
] 

 [1.5] 

If true strain is used to calculate 𝑑𝜖𝑐 then the additional term is not required and [1.4] is 
correct. 



1.6.4 Shear strain 

For material that is deforming at constant volume then the shear strain at the cavity wall γc 
is given by the constant area ratio, ΔA/A, which is the change of area divided by the current 
area. Referring to fig 1.2 where the cavity starts from unit radius: 

 ΔA

A
=

π(1 + εc)2  −  π

π(1 + εc)2
 

∴ γc = 1-1/(1+εc)2 

 [1.6] 

Note that γc can be expressed in terms of simple strain. Note also that when εc is less than 
0.01 (1%) then γc≈2εc. The error is less than 2%. 

For material that is not deforming at constant volume, calculating shear strain is more 
complex and depends on additional calculations that provide the increments of volumetric 
strain. These are explained in the section on analysing tests in drained materials. 

1.7 Average displacements versus the output of the separate axes 

There are a number of displacement sensors in the expansion probe but recommended 
practice is to quote parameters from the average displacement curve. This is for two 
reasons: 

• The reference for the measured displacements is the body of the instrument itself - 
trying to separate the individual axes means assuming the body of the instrument 
remains fixed at all times, which is not realistic.  

• All available analyses assume isotropic properties in the surrounding soil, and only the 
average pressure/strain curve represents this condition.  

These remarks assume that the instrument is in full working order throughout the test - 
failure of a displacement follower means that alternative strategies must be adopted.  

The significance of the first point above has been demonstrated by an examination of cycles 
of unloading taken from separate arms (Whittle 1993) and by work with a six arm version of 
the SBP (Whittle et al 1995). In the case of the 3 arm SBP an exception is sometimes made 
for the initial part of the loading prior to yield. In such circumstances the response of the 
separate arms may yield clues to the initial stress state in the surrounding soil, allowing an 
assessment of the degree of insertion disturbance.  

1.8 The analysis program 

We use (and supply to others) software for analysing a pressuremeter test. The program is 
called WINSITU, it has been in use for a number of years.  

To use the program the user must first read in a text file of test data in engineering units. 
The program needs to know the type of instrument being used, and the user may choose to 
enter additional background information about the test.  

The next task is to identify for the program the nature of the individual data points. 
Generally, the options are these: 

• a point can be part of the expansion curve  

• or part of a reload loop  



• or part of the contraction curve  

• or none of the above, and should be ignored in any analysis. This might mean a ‘rogue’ 
data point, but it is more likely to be true of parts of the loading where the expansion 
was slowed prior to taking an unload/reload cycle. Data points recorded at this time are 
neither part of the expansion nor part of a cycle.  

There is a quick on-screen routine for marking the points. Once marked, they appear in 
different colours. Most of the analyses use a limited set of the available data - for example 
the Gibson & Anderson analysis for undrained shear strength uses only points on the 
expansion curve.  

The program implements a number of standard analyses mainly in a graphical form. As fig 
1.1 implies, there are significant changes of gradient in the pressure/strain curve denoting 
critical soil parameters. The user of the program is provided with on-screen tools to mark 
these breakpoints or to obtain the slope of the loading curve. The tools can be visualised as 
rulers, whose position is stored by the program in the file of test data. The evidence for any 
derived parameter is a screen drop of the relevant analysis that shows the position of any 
rulers set by the user and quotes the parameter obtained.  

Even when the user declines to make a choice it may be good practice to provide the screen 
dump as evidence of why a choice is difficult.  

The results for a test appear as a summary sheet of derived parameters followed by plots 
showing the application of the various procedures.  

Sometimes analyses are required which are not included in the WINSITU program. In such 
instances commonly available spreadsheet software is used to implement the new analysis. 
Inevitably in such circumstances there is some risk of human error affecting the conversion 
of data in engineering units to the form required for analysis. WINSITU has export facilities 
and wherever possible is used as the data source for the spreadsheet.  
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2 DETERMINING MODULUS 

2.1 Notation: 

  

cu Undrained shear strength 
Gi Initial shear modulus 
GS Secant shear modulus 
Gt Tangential shear modulus 
Gy Secant shear modulus when the material first reaches full plasticity (yield) 
Gmax Elastic shear modulus 
Ghh, Gvh Shear moduli for transversely isotropic material 
Eh, Ev Young’s modulus in the horizontal and vertical direction 

 Poisson’s ratio 

hh, hv Poisson’s ratios for transversely isotropic material 

m Exponent of curvature used in modified hyperbolic equation  
N Exponent (Whittle & Liu, 2013) 
n Stress level exponent (Janbu, 1963) or anisotropy ratio (Wroth et al, 1979) 
kO Ratio of horizontal to vertical effective insitu stress 

, c Shear stress, suffix c means at the cavity wall 

pC Pressure measured at the cavity wall 
p′o Initial effective cavity reference stress 

c Circumferential strain measured at the borehole wall 

 Shear strain 

c Shear strain measured at the borehole wall 

a Invariant shear strain (axial strain in a triaxial test) 

ref Reference shear strain when Gs will be Gmax/2 

y Shear strain at which the material reaches first failure 

 Radial stress constant when the strain scale is shear strain 

h Radial stress constant when the strain scale is cavity strain 

 Shear stress constant when the strain scale is shear strain 

ref Shear stress constant at a reference stress level 

 Exponent of non-linearity 

′av Mean effective stress 

ho    ′ho  Total and effective insitu lateral stress 

vo   ′vo Total and effective insitu vertical stress 

 

  



Figure 2.1 Field curve –pre-bored test in silty sand 

 

2.2 Background 

For users of high resolution pressuremeter data the primary purpose of the test is obtaining 
realistic parameters for the elastic properties of the ground. Up to yield, where yield is 
defined as the first instance of mobilising the maximum shear stress, the slope of the 
loading curve can be used as a source of stiffness data. In practice this part of the cavity 
loading will be affected by disturbance, difficult to quantify, caused by the method used to 
place the probe in the ground (fig 1, the pseudo-elastic slope).  

Once the material is loaded past its yield condition a zone of plastically deformed material 
starting from the cavity wall begins to extend into the soil mass. One consequence is that 
the stress history of the insertion process is erased as all elements within the plastic zone 
are put into a uniform condition. At a radius remote from the cavity wall and the 
pressuremeter there will be a single boundary where the material is on the point of yielding.  
If the direction of loading is reversed, the response seen at the pressuremeter will be that of 
the material beyond the boundary being unloaded elastically and then plastically. If the 
unloading continues then reverse plastic yield will result.  

In fig 2.1, small cycles of unloading and reloading exploit the response prior to the reverse 
yield condition to derive the elastic properties of the ground. It is evident that although each 
cycle is taken at a different cavity radius and stress, the procedure is highly repeatable. This 
test was pre-bored, so the cavity was completely unloaded prior to the pressuremeter test 
commencing. The consequences of this are clear when the slope of the initial loading is 
compared to the unload/reload cycles.  

It would be straightforward to place a line through each of the cycles in fig 2.1 and use the 
slope to calculate the shear modulus, G. This is common practice but, unless the material is 
intact rock, is misleading. The third cycle in fig 2.1 is shown as an inset, and has a clear 
hysteretic characteristic. This is due primarily to the influence of strain level on the current 



Figure 2.2 Shear modulus degradation curves (drained loading) 

 

Figure 2.3 Shear modulus degradation curves (undrained loading) 

 

modulus. The elastic response of the ground where all deformation is fully recoverable 
applies to a strain level beyond the reliable resolution of the pressuremeter at shear strains 
of about 0.002%. The unload/reload cycles are showing the largely recoverable response 
when the stress alteration is less than that required to make the material yield, shear strains 
in the range  0.01% to 1%. This is the strain range that is significant for design purposes.  

If there are sufficient data in the cycle then it is possible take tangents to the unload or 
reload path of radial stress against cavity strain and find the current shear stress (Palmer 
1972), as in fig 2.6.  It is straightforward to turn these shear stress values into a shear 
modulus degradation trend. In practice the quantity of data are limited and the alternative 
is finding a function that describes the unload or reload path.  Bolton & Whittle (1999) 
shows that this non-linear response is adequately represented by a power law. Using the 
power law parameters to solve the Palmer semi-differential solution gives a continuous 
stiffness degradation curve (figs 2.2 and 2.3). The individual  points in these figures are the 
product of taking tangents to the measured data, the lines are the power law trend. 
Alternatives to the power law method include Jardine (1992) where a ‘transformed strain’ 
approach is applied to unload/reload data. The semi-empirical formulations were developed 
for specific soil types and are not transferable.  

If the material is 
low permeability clay, 
giving an undrained 
loading, then the 
mean effective stress 

′av following yield is 
constant, and all cycles 
will follow a similar 
path (fig 2.3).  

The material 
tested in fig 2.1 is a 
silty sand and the 
loading is a drained 
event. The trend of 
each cycle (the strain 
dependency)  is almost 
identical, but 
successive cycles (fig 
2.2) plot a higher 
stiffness, because of 
increasing mean 

effective stress, ′av.  

A full data reduction 
will adjust these 
trends to a reference 
stress level such as the 
effective insitu lateral 

stress, ′ho. This 

requires ′av for each 



Fig 2.4 Annotated unload/reload cycle 

 

cycle to be calculated. Hence although stiffness is obtainable from all insertion methods, no 
matter how disturbed, it may still be necessary to determine additional strength related 
parameters in order fully to reconcile the stiffness data.  

Used vertically, the pressuremeter gives shear modulus parameters of type Ghh, where the 
first suffix shows the direction of loading and the second the direction of particle 
movement. Many design calculations requiring a value for shear modulus mean in practice 
the independent shear modulus Gvh. It is not possible to discover the ratio connecting Ghh 
and Gvh from a conventional pressuremeter test unless it is assumed that the ratio is related 
to ko. This is only partly true. Nevertheless,  because of the quality and relative speed with 
which Ghh can be determined it may be convenient to measure Ghh and assume an 
appropriate reduction factor. For engineering problems where the direction of loading is 
lateral, Ghh is the most relevant stiffness parameter.  

Unloading and reloading are a feature of many laboratory material test procedures and pile 
loading tests. In the context of a cavity expansion in an infinite medium the first account of 
the theory behind the procedure is given by Hughes’82. Cycles are a prominent feature of 
the Wroth Rankine lecture (Wroth, ’84). Bellotti et al (’89) give an explanation and 
methodology for manipulating the stress dependency of tests in sand. Muir Wood (1990) 
and Jardine (1992) explore the potential of the cycles for describing the non-linear strain 
dependency of the ground. Bolton & Whittle (’99) propose the simple procedure (described 
below) based on a power function.  

Examining the detail within an unload/reload event requires high resolution local 
displacement measurement. Even in devices that do use local measurement it is necessary 
to be certain that what is measured is an accurate representation of the movements of the 
cavity wall, and not the finite stiffness of the probe itself.  

The pressuremeter test shears the material. The modulus measured is shear modulus G and 

is independent of Poisson’s ratio  G can be used to derive Young’s modulus E but  must 
be given or estimated. It is also straightforward to derive the bulk modulus M from the 
shear modulus. 

2.3 Describing 
the unload/reload 
cycle 

Figure 2.4 shows an 
unload/reload cycle 
extracted from a field 
curve such as the 
example in fig 2.1. In 
this case the data are 
part of a test in stiff 
clay. In the interval 
between pausing the 
loading to take the 
cycle and the actual 
reversal of stress 

there are several data points showing the expansion continuing for no pressure increase. 



This phase of time dependent deformation is referred to as ‘creep’. Separating the 
contribution of the multiple processes that contribute to this behaviour is complex. It is 
unlikely that it will be possible to wait long enough for all creep behaviour to cease. This test 
in clay is an undrained event. There is a large excess pore pressure in the soil mass at the 
commencement of the cycle and waiting more than a short time would allow consolidation 
to take place. However the reducing displacement between readings shows that creep has 
fallen to a level low enough to permit a cycle to be taken. 

The decrease of pressure continues until sufficient data has been recorded to give a clear 
indication of the path of the unloading response. The pressure decrease needs to be less 
than that required to cause reverse plastic failure, which for an undrained test is equivalent 
to twice the shear strength.  

The reloading phase mirrors the unloading with a similar rate of pressure change and 
eventually crosses the cycle unload path. There are a few points before the main loading 
path is re-joined because the cycle is not a completely recoverable event. 

A chord has been drawn through the start and lowest point of the cycle. The slope of this 
can be used as a means of calculating shear modulus. If the material response was linear 
elastic then the result would be the shear modulus. It is apparent that the unloading and 
reloading data show a non-linear response, and the chord that has been drawn is only the 
minimum secant. There are an infinite number of steeper secants that could be drawn. The 
unloading and reloading responses mirror each other and  a rotation of the unloading data 
would describe the same path as the reloading data. This is made explicit in fig 2.6. 

2.4 Linear elastic interpretation 

If the material response is linear elastic then the local gradient prior to yield can be used as 
a source of modulus data. In fig 2.1 the part of the curve labelled ‘pseudo-elastic’ is an 
example. Because it occurs at the start of the test it is referred to as the initial shear 
modulus1, Gi.  

Shear modulus is the quotient of the change of shear stress  and change of shear strain : 

 G = / [2.1] 

Shear stress and shear strain are not directly measured by the pressuremeter. In fig 2.4 the 
axes are radial displacement and radial stress at the cavity wall. If the material is linear 
elastic then a change of radial stress is equivalent to the change of shear stress (in this 
example, 244kPa).  Displacement needs to be expressed non-dimensionally as strain. The 

change of current cavity strain c  is the change of displacement divided by the radius of the 
probe at the mid-point of the cycle, in this example 3.566 x 10-3 

Current shear strain at the cavity wall c is twice c, an approximation that is convenient and 

valid if c is small.  

This leads to G = pc/2c [2.2] 

The calculation for shear modulus G in fig 4 can be carried out using [2.2] and gives 
34.3MPa. As G has been derived from an unload/reload cycle it normally has the subscript 
Gur. Equation[2.2] can be applied anywhere on the loading curve where elastic data can be 

 
1 1Unfortunately, ‘initial’ is used in two conflicting senses. In the context of non-linear stiffness “initial 
modulus” generally refers to the maximum or elastic modulus, which in the case of fig 2.1 is certainly not true.   



Fig 2.5  A linear elastic unload/reload cycle 

 

found. If shear strain is calculated as in the example then it is always current shear strain 
and [2.2] remains valid for all expansions. The advantage is that shear modulus can be 
derived from displacements without the need for prior processing to identify a strain origin 
for the entire field curve. 

In practice the only 
material routinely 
showing a linear 
elastic response up to 
the point of yield is 
intact rock (fig 2.5). 
There are three such 
cycles in the test all 
giving similar results 
(approximately 8GPa). 
Because the material 
is strong enough to 
support an open hole 
without failing in the 
reverse sense, the 
slope from the latter 
part of the field curve 

gives a result similar to the modulus determined from unload/reload data.  

2.5 Non-linear stiffness/strain response 

In all soils, for shear strains smaller than the yield value, the stiffness/strain relationship is 
not linear. The unload/reload cycle can be made to give a comprehensive description of this 
relationship by looking at smaller steps of pressure/strain other than the points at the 
extreme ends of the cycle. Figure 6 plots the unloading and reloading data from fig 4 in this 
way. Each path has its own origin, as indicated in fig 4, and the unloading data have been 
rotated to emphasise that both sets of data are showing the same thing. It follows that it is 
only necessary to examine one half of the rebound cycle, and the origin for data obtained 
after the reversal of stress in a loop has the smallest uncertainty because creep is at a 
minimum (Whittle et al, 1992). Fig 2.6 also shows the underlying shear stress response. The 
test is an undrained event so taking tangents to the radial stress data gives the current shear 
stress (Palmer ’72, Hughes ’73). 

The simplest description of the reloading response is a power law. The exponent of the 

power law defines the non-linearity of the response and is denoted  It is generally a 

number between 0.5 and 1 where 1 indicates linear elasticity. In the example  is almost 
0.7, appropriate for a silty clay.  

The results in fig 2.6 show the power law trend in radial stress/cavity strain space. Using 
parameters that the pressuremeter test can determine, this result can be written as: 

 pc = hc
 [2.3] 

h is the radial stress constant when the strain scale is current cavity strain (circumferential 
strain at the cavity wall). Because the test is undrained there are no volumetric strains so 
shear strain is twice the circumferential strain. This approximation is valid for small strains 



 
Fig 2.6 The non linear elastic response 

 

below the yielding value. The result in radial stress/shear strain space is given by:   

 pc = c
 [2.4] 

where  = h/2 [2.5] 

For an undrained expansion, Palmer (1972) shows that the current shear stress c is given by 

 c = dpc/d[ln(c)] [2.6] 

Substituting for dp using the right hand side of [2.4] allows the differential equation to be 
solved giving 

 c =  [2.7] 

Bolton & Whittle refer to  as the shear stress constant and call it . Secant shear modulus 
Gs is given by : 

 Gs = c
-1 [2.8] 

Tangential shear modulus Gt for a shear 

strain  is given by (Muir Wood, 1990) 
Gt = Gs + c[dGs/dc] [2.9] 

Hence from the power law Gt = c
-1 [2.10] 

[2.8] gives a means of 
determining the secant 
shear modulus for shear 
strains below the yielding 
value  down to 10-4 .  This is 
the safe resolution limit of 
the current generation of 
pressuremeters and is more 
than the elastic strain at 
which the stiffness 
degradation commences.  It 
is usual to plot the trend 
between 10-4 and 10-2 plane 
shear strain (0.01% to 1%, 

see figs 2 and 3). Ideally the large strain limit should be the yield shear strain of the material. 
1% is appropriate for many stiff clays, but will be too large for sands and too small for soft 
clay. Secant shear modulus at yield strain is Gy and is the secant shear stiffness governing 
the pressuremeter loading curve.  

It is not necessary to take cycles of small strain amplitude to obtain small strain stiffness 
parameters. It is better to make the cycles as large as practicable (subject to the condition 
that the material is not allowed to fail in extension) to obtain parameters from as wide a 
strain range as possible.  

The Bolton & Whittle analysis was developed for undrained tests. For a test in drained 
material the solution can be used assuming that whilst the material is deforming elastically 
there are no volumetric strains. Alternatively, the power approach is merely a curve fitting 
exercise and the solution in radial stress/cavity strain space (equation [2.3]), can be used to 
generate a smooth data set. This allows a numerical solution for drained tests to be applied 
(Manassero, 1989). The results are similar to the undrained parameters with a tendency for 



Fig 2.7  Drained & undrained interpretation of the same data 

 

 to be slightly higher (more linear). The difficulty is that to apply the drained analysis the 

ambient water pressure and the constant volume friction angle ’cv must be known or 
estimated. Figure 2.7 is an example of a test in highly weathered mudstone, with the shear 
stress/shear strain response obtained by treating a reloading phase as a drained and 
undrained event. The difference between the two trends will depend on the potential for 

dilation.  

2.6 Stress level 

For modulus parameters 
derived from undrained 
expansion tests the mean 
effective stress remains 
unchanged throughout the 
expansion and all 
stiffness/strain data will plot 
the same trend. Conversely, 
failure to plot the same trend 
implies changes in the mean 
effective stress (fig 2.2).  

Whittle & Liu (2013) give a 
method for both stress and strain adjustment and can be applied to tests that contain at 
least four unload/reload cycles. 

Their solution can be written as: G = AN [2.11] 

A and N are both semi-log equations incorporating shear strain. For most purposes this level 
of complexity is not required and a simpler approach can be adopted.  

1) Start by carrying out the non-linear analysis described above and discover  and . Use 
these to find, for each cycle, Gs at an intermediate value of shear strain, such as 0.1%. 

2) Calculate the mean effective stress σ´av at the commencement of each loop.  

 ´av = p′c/(1+sin ɸ′) [2.12] 

where ɸ’ is the peak angle of internal friction 

pc´ is the effective radial stress at the cavity wall 
 

pc´ is the pressure measured by the pressuremeter (minus the ambient pore water pressure) 

and whilst it is increasing ´av is approximated by [2.12]. This is the mean effective stress at 
the cavity wall.  Houlsby & Schnaid (1994) show experimentally that the stress effect is 
dominated by conditions immediately adjacent to the pressuremeter surface. 

3) Plot modulus against effective stress (fig 2.8). 

The example in fig 2.8 shows two tests in sand with multiple unload/reload cycles treated in 
this way. Each test gives a set of points that follow a power law trend. The exponent of the 
power law is describing the stress dependency at this level of shear strain. At this strain, 
typical values for the exponent n are in the range 0.3 to 0.4. The correlation coefficient for 
each trend is better than 0.99.  



Given the stress dependency exponent, for each cycle a stress adjusted version of  is 

found, ref:  

 ref = (′ref/´av)n [2.13] 

[2.13] incorporates the relationship suggested by Janbu (’63) and forms the basis of the 
approach to stress dependency used in Bellotti et al (1989). The reference stress is typically 

′ho. Once ref is defined it is used in place of  in [8] to obtain the stress adjusted strain 
dependent modulus. 

Figs 2.9 and 2.10 give a ‘before’ and ‘after’ example of the method being applied to a test in 
dense sand. The scales are the same in both plots, and it is apparent that in practice the 
stress adjustment gives a trend very similar to that of the first uncorrected cycle. The 
corrected trend also shows convergence at the strain level used for finding the stress 
exponent n. This is expected because it is known that the stress adjustment is slightly 
dependent on strain level. The Whittle & Liu (2013) solution varies n with strain level but for 
most practical purposes the refinement is not required.  

Fig 2.8  Finding the stress dependency exponent 



2.7 Cross hole anisotropy 

The pressuremeter test gives values for Ghh, the shearing stiffness in the horizontal plane. 
This is directly applicable to the analysis of radial consolidation or cylindrical cavity 
expansion due to pile insertion. Gvh is applicable all shearing which has an element of 
deformation in the vertical plane, such as under a footing or around an axially loaded pile. 

To convert from Ghh to Gvh some relationship between the two must be assumed. Wroth et 
al (1979) suggest that anisotropy arises from two causes: 

• Structural anisotropy due to the deposition of soil on well defined planes  

• Stress induced anisotropy, due to the differences in normal stress acting in different 
directions. 

The second cause implies the stiffness in any direction will be related to the effective insitu 
stress in that direction, in other words a function of ko. 

It can be shown 2Ghh = Eh/(1+hh) [2.14] 

For undrained expansion hh  = 1- n/2 [2.15] 

and n = Eh/Ev ≈ k0 [2.16] 

From this it follows Eh = (4- n)Ghh [2.17] 

and Ev = (4- n)Ghh/n [2.18] 

This is as far as an argument from first principles can be taken. ko is likely to lie between 0.5 
and 2, so from [2.16] and [2.17] Eh/Ghh lies between 2 and 3.5. From [2.18] Ev/Ghh lies 
between 1 and 1.75. 

 
Fig2.9  Uncorrected stiffness/strain data 

 

Fig 2.10 Stress adjusted stiffness/strain data 

 



It is likely that Gvh will be linked to Ev by Poisson’s ratio in a relationship of the form of 
[2.14]. Plausible values of Ev/Gvh would seem to be 2.4 to 3. Hence in a material with ko of 2, 
Gvh could be as low as Ghh/3. Simpson et al (1996) come to the same conclusion, but find in 
practice heavily over-consolidated London clay approximates to Gvh ≈ 0.65Ghh. The influence 
of the strain range is not separately considered in these studies. Fig 13 shows results from 
London Heathrow Terminal 5 where the ratio Ghh/Gvh is ≈1.6. Brosse et al, 2017, report 
ratios higher than this from four distinct stiff clay soils. 

Lee & Rowe (1989) give details of the anisotropy characteristics of many clays varying from 
lightly over-consolidated to heavily over-consolidated. The general conclusion is Ev/Gvh lies 
between 4 and 5, rather more than the isotropic relationship of 3. They were concerned 
with the impact of anisotropic stiffness properties on surface settlement so deriving Gvh 
from Ev is unsatisfactory - although Gvh is insensitive to the direction of loading, Ev is not.  

In all studies, Ghh is greater Gvh. How much so is not clear, and whether the difference is 
constant over the non-linear elastic strain range is also not clear  

2.8 Shear modulus from other parts of the pressuremeter curve. 

The first part of the unloading is an elastic process and can be used as a source of stiffness 
information. By the time the pressuremeter unloads, creep strains due to consolidation and 
rate effects will be large, so there will be a tendency for the initial unloading to be too stiff. 
If some allowance is made for this, then reasonable estimates of the shear modulus will be 
obtained.  

Curve fitting analyses imply a value for the secant shear modulus at yield. Although this is 
not likely to be the best way of deriving shear modulus data it is important justification for 
using such analyses that they can predict this independently measurable stiffness.  

2.9 Young’s Modulus 

All modulus parameters derived from the pressuremeter test are shear modulus Ghh. They 
can be converted to Young’s modulus Eh using [2.14].  

A non-linear version of [16] is E = 2(1+ v)(√3a)-1 [2.19] 

Where a is invariant or axial strain: a = c /3 [2.20] 

[2.19] has the virtue that these results can be compared directly with laboratory derived 
results which tend to use axial strain.  

2.10 Non-linear modulus in terms of shear stress 

For some applications it is convenient to derive stiffness values as a proportion of the 

mobilized strength. If the shear strength cu or shear stress at first failure f is known, and z 

represents the proportion of strength used, then the shear strain z for this proportion is 
given as follows:  

Where 0 < z ≤ 1 z = [zcu/](1/)  [2.21] 

For example it is common to require G50, the shear modulus when half of the available 
strength is mobilised. It is straightforward to apply the preceding non-linear stiffness 
expressions to derive the relevant modulus:  

Generally, shear modulus at strength fraction z: Gz= [zcu(−)  [2.22] 

Specifically, for G50: G50= [cu(−)  [2.23] 



Fig 2.11  The normalised stiffness/strain response of an SBP test in clay 

 

τf can be used in place of cu for tests in drained materials. It will be approximately  
p΄o sinφ΄ where p΄o is the effective cavity reference pressure and φ΄ is the angle of internal 
friction. 

2.11 Possible method for estimating Gmax and the threshold elastic shear strain 

The Bolton & Whittle 
(1999) procedure is 
valid for shear strains in 
the range 10-4 to the 
material yield strain. 
The lower limit is partly 
due to the mechanical 
limitations of the strain 
measuring devices 
(residual friction) and 
partly because the 
decay curve is a power 
law which would predict 
infinite stiffness unless 
a threshold strain can 

be specified. Figure 2.11 was drawn using data from an self bored pressuremeter test in 
Gault Clay, with the part of the curve in red indicating the information provided by a 
pressuremeter unload/reload cycle. 

The full stiffness decay curve is often described with a modified hyperbolic function. 
Oztoprak & Bolton (2013) use the following to model the decay curves for a wide range of 
tests conducted in sand: 

 
(

G

Gmax
) = 1 [1 + (

γ − γe

γref
)

m

]⁄  
[2.24] 

 Where G is secant shear modulus at a shear strain   

  e is the shear strain at the elastic threshold  

  ref is the reference shear strain when G/Go = 0.5  

  m controls the curvature of decay  

There is nothing specific to sand about [2.24] apart from the curvature parameter m.  
Oztoprak & Bolton found that m=0.88 (in their paper this parameter is denoted a but to 
avoid confusion is here called m) gave the best average fit to their database of sand tests. It 
is reasonable to suppose that the curvature is related to particle size and will therefore vary 
with soil type. 



Fig 2.13  Comparing laboratory & 
pressuremeter results for Gmax 

 

e is used in [2.24] only to give a constant value for Gmax at strains less than the threshold 
strain and can be omitted without significantly affecting the results. Vardanega & Bolton 
(2013) use this simpler version to describe the decay curves of a database of laboratory 
tests in fine grained material. 

For the pressuremeter test with unload/reload cycles the majority of the stiffness decay 
relationship is known but Gmax is not. This invites an iterative approach where successive 
estimates of Gmax can be used in [24] to find a modified hyperbolic trend that reproduces 

the pressuremeter decay data (fig 2.12). The 
horizontal axis is proportion of mobilised shear 
stress using [2.22] to relate shear strain to mobilised 
shear stress. A re-arrangement of [8] is used to find 

the reference shear strain ref and threshold shear 

strain elas whenever the estimate of Gmax is altered. 

To produce the trend in fig 2.12 the hyperbolic 
curvature parameter m has to be chosen in addition 
to making estimates of Gmax. Results suggest m is 
about 0.5. This does not agree with Vardanega & 
Bolton who report curvature values on average 
slightly greater than 0.7 but with considerable 
scatter. 

This speculative procedure has been applied to a 
number of sites and varying materials using different 
pressuremeter types. The factor m is a number 
possibly calculable from the non-linear elastic 

exponent, . The correlation coefficient between 
data sets predicted by the power law parameters 
and the hyperbolic parameters is generally greater 

Fig 2.12  Matching hyperbolic and power curves 

 



than 0.995. There is little judgement involved in setting Gmax – it is merely adjusted until the 
correlation coefficient reaches a peak.  

Figure 2.13 is an example, comparing high quality laboratory derived small strain stiffness 
results (Gasparre et al, 2007) with those obtained from self bored pressuremeter tests at 
the same site.  

2.12 Normalisation 

The choice of normalisation parameter depends on the underlying purpose. Generally it is 
the need for a non-dimensional version of a data set where the influence of depth has been 
removed. In the case of a pressuremeter test the usual choices are the initial effective stress 
p’o or strength, typically undrained shear strength cu in the case of data from tests in fine 
grained material. A less commonly used though potentially more logical parameter is the 
effective yield stress, p’y, which combines both and has an inherent link to the over 
consolidation ratio. An example of all these methods applied to a reasonably continuous 
profile of pressuremeter tests is given in Fig 14. 

There are eight tests in the example distributed between 5 and 51 metres below surface. 
The first six are in London Clay, the last two in the heavily over-consolidated mottled clay of 
the Lambeth Formation. The data as measured has a range of about 3.5, with clear 
indications of the material boundaries. Fig 14d has a distribution of less than 1.3 with only 
the Lambeth tests distinguishable from the remainder. 

2.13 The limit of recoverability 

The reduction of stiffness with increasing shear strain is generally attributed to the loss of 
inter-granular contact or slippage (Oztoprak & Bolton, 2013) so that within an assembly of 
particles a growing proportion can no longer make an elastic contribution. This is a 
recoverable process if the direction of loading and hence straining is reversed and contacts 
once more engage.  

As indicated in fig 2.4, although the unload/reload cycle is almost recoverable there is a 
small loss which may be attributable to fracture damage occurring at the micro-scale. There 
is some evidence for this. Although not obvious in figs 2.2 and 2.3, successive cycles tend to 
show a slight increase in non-linearity which may be attributed to a greater proportion of 
smaller fragments as breakage progresses. This is not the case for all materials. There are 
tests where non-linearity either stays constant or even reduces slightly as the expansion 
continues (fig 2.15). The material in this example has been transported a considerable 

Fig 14  Normalising stiffness/strain data 
 

 
a.  As measured 

 
b.  Using p’o  

 
c.  Using cu 

 
d. Using p’y 



Fig 2.15 – Reducing non-linearity in a fluvial sand 

 

Fig 2.16 – Effects of creep 

 

distance in fast flowing water, a tumbling process that removes asperities. The more the 
particles resemble spheres the less likely it is for micro-fracturing to occur as there are 
fewer opportunities for differential fracture development.  

Note that the points obtained by taking tangents directly show stress reduction at larger 
shear strain. The strain scale extent is arbitrary;  what the measured data are indicating is 

the yield strain of the 
material. 

There are situations where it 
is difficult to make a 
successful unload/reload 
cycle. Chalk is an example. 
Once the yield stress of the 
chalk has been exceeded 
there is a tendency for the 
structure of the material to 
collapse, a process that will 
continue indefinitely and is 
exhibited as a large creep 
displacement whenever the 
loading is paused. Reducing 
the pressure in an attempt to 
drop below the current yield 
surface will often result in 
cycles that are ‘V’ formed (fig 
2.16). The chord through the 
cycle has been aligned with 
the reloading data, which in 
this case is the conservative 
option. The only cycle in this 
test to be relatively free of 
creep influence is the one on 
the final unloading. Difficulty 
with creep is also an 
influence on pushed tests, 

where the radial stress is approaching the limiting condition.  
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PART 3 ANALYSES FOR INSITU LATERAL STRESS 

 

  



 

Figure 3.1 Key stress points 

3 ANALYSES FOR INSITU LATERAL STRESS 

3.1 Overview 

The expansion pressuremeter test is a sequence of measured co-ordinates of pressure and 
displacement of the cavity wall (once suitable corrections have been made to compensate 
for the response of the elastic membrane). Analyses that extract the stress/strain properties 
of the ground from the pressure/displacement data need to know the start point, the initial 
stress and displacement to which subsequent measurements are referred. The initial stress, 
the Insitu lateral stress σho is particularly difficult to identify. It is more usual to refer to a 
cavity reference pressure po which may be synonymous with σho. The initial radius, ro in fig 
3.1, is possibly more obvious.  

Although in principle the stress ordinate of the initial radius ought to be po, in practice this 
cannot be the case unless the probe has been inserted into the material with insignificant 
disturbance. However assuming the two values are co-incident is the starting assumption.   

For insertion methods that imply stress relief, the origin is taken to be the point where the 
cavity is restored to its original or reference condition. A reference stress, po, is identified 
that seems to represent the point at which the cavity begins to expand. The displacement 
ordinate of this stress (ro in fig 3.1) is used to convert subsequent displacements to strain.  

Fig 3.1 is showing a ‘perfect’ pre-bored 
test. For a similarly ‘perfect’ self -bored 
test the expansion will not commence 
until the applied stress reaches po , 
allowing the cavity reference stress to be 
identified by inspection. This is the so-
called ‘lift-off’ method.  

The self boring pressuremeter is fitted 
with pore pressure transducers, and the 
trend of excess pore water pressure 
against total stress can be used to 
identify yield stress and reference stress. 

It is also possible to recognise by 
inspection the shear stress limit (the 
point marked pf in Figure 3.1) as this is 

indicated by the onset of a markedly non-linear response. An iterative procedure first 
suggested by Marsland & Randolph (1977) allows po to be inferred. The published method is 
not valid for tests in sands and tests in material with non-linear elastic properties. This 
effectively rules out all soils. Nevertheless it is usual to apply the procedure because it tends 
to set an upper limit to any estimate of reference stress. 

Elements of these methods are outlined in Mair & Wood (1987). For a pushed test, the 
expansion commences when the material is already in a plastic state, p? in fig 3.1. The 
question mark indicates that although the pressure can be seen, the radial displacement 
ordinate cannot be used as part of a meaningful strain calculation.  

A more novel approach is the balance pressure creep method (Hoopes & Hughes, 2014).  
This is a procedure that examines in close detail the latter stages of the final contraction. A 



 
Fig 3.2  An example of lift-off 

small reload/unload event is carried out where the steps of pressure are held constant and 
the magnitude and direction of any time-dependent movement are identified. There is a 
possible null  stress for which there is no discernible movement either inwards or outwards 
and this ‘balance pressure’ is assumed to be the geostatic lateral stress.  Potentially, this 
gives a means of means of obtaining reference stress estimates for all types of 
pressuremeter, no matter how disruptive the insertion process.  

Some rigour can be applied to all these procedures by using the full set of parameters 
derived from a pressuremeter test within a closed form model to discover whether the 
measured field curve can be recovered. The input data set is then adjusted in a controlled 
manner until the best match for all parameters is obtained. In certain models (Whittle, 
1999) the only free parameter is the reference stress.  

Apart from the balance pressure creep method, modelling may be the only means of 
obtaining a reference stress by analytical methods from an undrained pushed test (Houlsby 
& Withers, 1988).  

In all cases what is determined is cavity reference pressure, po. It is not possible to measure 

the insitu lateral stress ho because the act of placing instrumentation always results in 
some movement, even if very small, and movement means a change in stress. Due to the 
non-linear nature of soil stiffness a movement of a few micro-strain can result in a large 

stress alteration. The methods above are indirect indicators for determining ho. It is open 

to question whether po is equivalent to ho, and multiple sources are examined  in order to 
decide if the assumption is plausible . External evidence might take the form of using the 
derived reference stress within a kO calculation, or checking that the derived 
vertical/horizontal anisotropy can be supported by the material shear strength: 

 ho -  vo < 2Cu .      ...[3.1] 

In practice there is a wide range of values that would satisfy this condition so its usefulness 
is limited. 

3.2 Lift-off 

This method ought to 
be applicable only to 
the relatively low 
disturbance self-
bored test, but 
occasionally it seems 
to give sensible 
results with more 
extreme insertion 
procedures. In 
principle it is 
straightforward. The 
instrument is 
assumed to be bored 
into the ground with 

insignificant disturbance caused to the surrounding material. If the insitu conditions around 
the instrument remain unchanged by the insertion process then the pressure at which the 



 
Fig 3.3 Lift-off, all arms shown 

membrane first moves and the cavity begins to expand is po. The corresponding cavity 
diameter will be the same as the at rest diameter of the instrument. Because the initial part 
of a self-bored test is very stiff the choice is made from an enlarged view of the first 0.5mm 
(≈1.2% cavity strain) of the expansion (fig 3.2). This range is sufficient to show any elastic 
behaviour and the early stages of the expansion post-yield.  

Difficulties arise because the instrument has finite stiffness and hence there is instrument 
compliance to be separated from the expansion of the cavity. At the start of the test when 
the internal pressure is ambient the instrument is being externally loaded by the lateral 
stress in the ground. This external stress is forcing the displacement followers inwards so 
unless the seating of the followers at the zero state is perfect there will be a stored error 
movement. At the point where the internal pressure matches the external stress these 
imperfections are revealed as a characteristic ‘signature’ for the individual arms. In a 
simplistic approach these signatures could be considered as positive indications of the 
reference pressure. However in the ground it is not possible to have displacements without 
an associated change in stress, which add to or subtract from the reference pressure. 

As a consequence of these 
error effects, applying the lift-
off analysis means that there 
can be considerable 
uncertainty attached to 
identifying a plausible 
reference pressure. 
Conventional practice for 
coping with this uncertainty is 
to relax the definition of 'lift-
off' to mean something more 
like 'significant movement'.  

Figure 3.3 is an illustration of 
the problems involved with 

identifying lift-off. Here the individual arms from the SBP test in fig 3.2 are plotted. There 
are many choices of lift-off stress depending on how rigorous the interpretation of what is 
implied by the term. In general the strict lift-off stress is that obtained from the first arm to 
move. The variation in the starting stress distribution indicates defects in the installation 
process. The probe may not be perfectly vertical, or may not be removing material 
efficiently enough to avoid raising the local state of stress in material immediately adjacent 
to the pressuremeter.  

It is important to bear in mind the scale. The lift-off information is concentrated into the 
first 100 micrometres of the expansion or about 0.25% cavity strain. This is less than the 
strain required to make the material reach the fully plastic condition (yield). Because the 
movements are well within the elastic range of the material the analyst is justified in 
attributing significance to the output of the separate arms. In this event the arithmetic 
mean of the separate lift-off points can be a more useful parameter than lift-off derived  
from averaged arm displacement data.  



 
Fig 3.4  Lift-off in a pushed RPM test 

If a strict definition of 'lift-off' 
could reasonably be applied 
then no assumptions 
concerning soil response are 
required. In the less rigorous 
application that in practice is 
followed most of the time,  it 
is important that the analyst 
identifies the onset of plastic 
behaviour as a guide to 
deciding that some 
conspicuous change of form 
in the loading curve at a lesser 
stress is likely to be po. Plots 
would still refer to such a 

break point as 'lift-off' but clearly it is something else, po by inspection perhaps.  

Fig 3.4 is an extreme example. This is an extract from an RPM test made in a pocket formed 
by SPT tools. The material has been grossly disturbed by the SPT and has probably been 
taken to near limit conditions before the pressuremeter is positioned.  Nevertheless there 
are clear examples of ‘lift-off’ stress. It happens for this test that the best-estimate for po is 
290kPa rather than the lift-off value of 343kPa but under the circumstances this is 
acceptable ball-park agreement. It is possible that the influence of the lateral geostatic 
stress results in a stress witness in the measured response even under conditions of major 
disturbance. It is an area that requires further investigation. 

3.3 Marsland & Randolph (1977) yield stress analysis 

Marsland & Randolph analysis for undrained soils relies on being able to identify the onset 
of plastic behaviour, the yield stress pf. The argument is as follows: 

• In the vicinity of the insitu lateral stress the soil response is simple elastic and therefore 
the total pressure/ cavity strain plot will be linear. Identify this slope (and incidentally, 
use it calculate the initial modulus Gi). 

• Elastic behaviour will cease when the undrained shear strength of the soil is reached in 
the wall of the cavity, and hence the pressure /strain plot will begin to curve (see fig 
3.1).  

• The yield stress can be written as: 

 pf = po + cu [3.2] 

• From this it follows that po can be deduced by iteration using a plot of displacement 
against total pressure. 

• Initially a guess is made of  po, such as 50% of the yield stress.  The displacement 
ordinate of the chosen po defines an interim origin to convert displacement to strain. 

• It is then possible to produce a total pressure:log shear strain plot to find the undrained 
strength cu (Gibson & Anderson, 1961). 



• The sum of these two parameters is compared with the selected value of pf. The choice 
of po is then suitably adjusted and the process repeated until a match is found. It is a 
straightforward matter to carry out this procedure on the computer. 

The modified method in current use is a response to the difficulty that perfectly plastic 
deformation is not a realistic enough model for many materials and yield may occur at a 
different shear stress than the large strain shear strength. Hawkins et al (1990) suggested 
that the most appropriate choice was that value of shear stress pertaining at the apparent 
onset of plasticity, so [3.2] now becomes: 

 pf = po + f [3.3] 

f can be obtained from a total pressure:log shear strain plot by selecting the slope at the 

pressure and strain corresponding to the choice of pf . In practice this substitutes the Palmer 
(1972) numerical solution for the Gibson & Anderson solution. See inset plot in fig 3.5. 

The analysis is implemented graphically, using rulers to mark significant points on the curve 
(fig 3.5). 

It is necessary to be realistic about what the method can do. In the case of the example 
above, the test is made with a self boring probe arranged to bore fractionally over-size in a 
stiff clay. The 0.35mm overcut is very close to the overbore dimension and indicates that 
the material has not slumped.  Under these circumstances, which approximates ‘perfect 
pre-boring’ the analysis gives sensible results because any small relaxation can be supported 
by the available shear strength. Generally, this is not the case. 

 

 
Fig 3.5  An example of the Marsland & Randolph analysis 



Figure 3.6 shows a slightly different version of the same analysis applied to a genuine pre-

bored pressuremeter test. The loading was carried out as a series of pressure steps, each 
step held for one minute. The plot on the left is the ‘creep’ movement for each hold. The 
plot on the right is similar in arrangement as fig 3.5 except that the data are those taken at 
the end of a creep interval so give an especially smooth curve.  The creep readings give an 
additional indication of the yield stress as there is an acceleration in the movement. It is not 
quite so easy to detect the cavity reference stress.  

The failure condition given in [3.2] could be written:  

 pf = po (1+ sin ϕ΄) [3.4] 

where ϕ΄ is the peak angle of internal friction  

This would make it appropriate for drained tests in purely frictional material such as sand. In 
place of deciding shear stress from an undrained analysis, a procedure such as Hughes et al 
(1977) would need to be applied. 

Alternatively [3.2] and [3.4] could be combined for a c’- φ΄ material: 

 pf = c’cos ϕ΄+ po sin ϕ΄ [3.5] 

where c’ is drained cohesion  

The difficulty is that [3.4] and [3.5] require additional information not directly measured by 
the pressuremeter test. [3.3] is easily implemented and applied to all stress paths, some of 
which imply significant compromise. It will not be accurate, but used as a rough guide to the 
initial stress state, remains useful. However it is unlikely to be the best tool for the purpose. 

For one particular circumstance applying the analysis is seriously misleading. This is when 
the insertion process has raised the initial state of stress, such as a pushed test but also an 
under-drilled self boring pressuremeter test. In this event the analysis can contribute 

 
Fig 3.6  An example of the Marsland & Randolph analysis with creep readings 



Fig 3.7 The ideal pore pressure response 
(after Bolton & Whittle, 1999) 
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nothing – forcing such data to fit the assumptions of the analysis will severely over-estimate 
the cavity reference pressure. 

3.4 Deriving parameters from the excess pore pressure trend 

Bolton & Whittle (1999) predict 
the trend of excess pore water 
build –up from an undrained 
cavity expansion in a non-linear 
elastic/perfectly plastic material 
(fig 3.7). The significant difference 
between this trend and that in a 
simple elastic/perfectly plastic 
medium is the generation of some 
excess pore pressure during the 
pseudo-elastic phase of the test 
prior to the material fully yielding. 
The rate at which the pore 
pressure rises during the elastic 
phase is related to the exponent 

of non-linearity, , a number less than 1 unless the response is truly linear elastic (the 
Bolton & Whittle analysis is described more fully in Part 4).  

In both cases, once the material becomes plastic, there is a 1 for 1 correspondence between 

changes in total stress and changes in pore water pressure. In practice, few self boring tests 
have the necessary minimal disturbance to show the full theoretical behaviour. Even for 
tests where the insertion procedure is optimal the interruptions to the loading to take 
unload/reload cycles tend to disrupt the pore water pressure generation.  

Fig 3.8   An example of pore pressure response 

 



Fig 3.8 is a typical example of what can be achieved in practice. In the latter stages of the 
loading when unload/reload cycles are taken the pore water pressure response levels off. 
This indicates partial drainage, probably not in the soil mass but locally at the borehole wall 
where gaps in the protective sheath introduce axial drainage paths.  

3.5 Deriving insitu lateral stress by curve modelling 

The uncertainty in associating a particular value for cavity reference pressure po with the 

insitu lateral stress ho can be reduced by curve modelling. Jefferies (1988) is a procedure 
for deriving insitu lateral stress, stiffness and strength from undrained pressuremeter curves 
by matching the measured data points with an iteratively selected parameter set.  Some 
rigour is introduced into the procedure by making the set of parameters match the 
contraction as well as the expansion phases of the SBPM test.  

The model used to represent the deformation characteristics of the soil has to be realistic. 
Jefferies (1988) follows Gibson & Anderson in assuming a simple elastic response until the 
full shear strength of the material is mobilised and a perfectly plastic response thereafter. 
Outside of a computer, there is no such soil and the model does not predict the measured 
field values for stiffness. This is a serious deficiency because it is the one property of the soil 
that pressuremeters provide reliably without major difficulty.  

However the procedure can be used with more representative soil models, and it is 
customary now to back-analyse undrained tests using a non-linear elastic/perfectly plastic 
shear stress:shear strain solution. As described in Whittle (1999) this uses as input the 
already determined values of stiffness and shear strength so the only variable to be decided 

is the insitu lateral stress. Both expansion and contraction phases of the test are fitted (fig 
3.9). The model is given in more detail in Part 4. 

There are similar methods for drained tests using a non-linear version of the solution 
suggested by Carter et al (1986). These models are outlined in Part 5. 

 
Fig 3.9 Undrained curve fitting example, self bored test 



For a SBP arranged to drill to size, the values for lateral stress derived using the non-linear 
undrained model are often lower than those obtained by inspection, and are consistent with 
a view of the test as slightly under drilled. This raises the state of stress around the probe. If 
the probe is configured to drill fractionally oversize the reverse situation can happen. It is 
generally easier to interpret an over-drilled test compared to an under-drilled test. 

The procedure can also be applied to pre-bored pressuremeter test data but the fit to the 
initial part of the loading will not be possible (fig 3.10). 

Only one value for insitu lateral stress is derived using these procedures, as isotropy of soil 
properties is a fundamental assumption. Because the procedure makes uses of all the 
evidence it is the preferred method for deriving the insitu lateral stress.  

3.6 Balance Pressure Creep Test 

The Balance Pressure Creep (BPC) method is outlined in Hoopes & Hughes (2014), and fig 
3.11 is an example of a test in clay that includes an implementation of the method. Fig 3.12 
shows the BPC part of the test expanded.  

The method consists of a series of pressure holds on the final unloading, each hold held for 
a fixed period. The Authors suggest 2 minutes. The ground response is monitored for 
indications of the geostatic lateral stress. Inward creep means that the applied stress is 
below the lateral stress, outward movement means the reverse. It is argued that there is a 
stress, the balance pressure, where movement will be zero. It is not necessary to apply a 
pressure hold at the exact point of balance, the pressure steps can be plotted and 
interpolation used to decide the point of zero creep.  

In practice it is more complicated. Creep from this part of the test depends on the direction 
of loading immediately preceding the hold, where the BPC test is started in relation to the 

 
Fig 3.10 Undrained curve fitting example, pre-bored test 



balance point, and the permeability of the material. For most situations it is not the creep 
movement but the creep rate that becomes zero at the balance point (fig 3.13). 

The procedure used in this example is to begin the BPC test at approximately 50% of the 
over-burden stress and continue it until a stress of twice the over-burden has been applied. 

 
Fig 3.11 SBP test in London Clay that includes a BPC test 
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Fig 3.12 Enlarged view of BPC test 
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Fig 3.13 BPC analysis 
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Fig 3.14 BPC analysis 

It is expected that in this material this will cover the plausible range for the Insitu lateral 
stress. There are several holds, both on the loading and unloading arm of the BPC test, but 
held for a relatively short time of 30 seconds. The start and finish of a holds give a creep 
displacement for a particular stress and the difference between adjacent steps is plotted in 
fig 3.13. The stress data have been normalised by the best estimate available for the cavity 
reference pressure, which in this case was decided by curve modelling.  

There is an excellent degree of agreement 
between the best estimate value and the 
indications from the creep data. 

The BPC method can be applied to tests in sand 
but it is harder to recognise the point where the 
creep rate is zero. Fig 3.14 is an example of a 
BPC analysis from a very dense sand. The test 
was carried out with a small pre-bored 
pressuremeter.  

Procedurally, what is being done with the BPC is 
similar to the Ménard methodology  of applying 
pressure increments at the start of the test and 
waiting for a fixed period.  The difference is that 
following pre-boring the borehole has been 
completely unloaded.  

If the material is soil then the consequence is 
irrecoverable disturbance and very little can be 
determined until the effects of that have been 
erased. This requirement is satisfied by a large 
expansion of the cavity and a subsequent 
unload that is stopped for the BPC test before 

the membrane loses contact with the borehole wall.  

In fig 3.11, for example, the BPC cycle has a similar stiffness to the unload/reload cycles 
carried out on the loading. This is not the case for the initial loading of a pre-bored cavity, 
where the creep due to moving either side of the geostatic stress potentially is 
overwhelmed by the magnitude of the creep deformation caused by the process of 
restoring the cavity to its original dimension.  



Nevertheless, despite these cautions, it is possible that creep readings on the initial loading 
are showing a significant response. Fig 3.15 is extracted from the same test as shown in fig 
3.14. 

The magnitude of the creep is much less for the final unloading. However the initial loading 
is showing a change of direction in the vicinity of the geostatic stress that would give a zero 
creep rate. This is not the stress point that would be identified as cavity reference pressure 
in the standard interpretation of such data. 

3.7 A note about ko – submerged measurements 

The statement above is a text-book description of the relationship between effective stress 
and the coefficient of earth pressure at rest, ko. The ambient water pressure uo is deducted 

The principle of effective stress is fundamentally important in soil mechanics. It must 
be treated as the basic axiom, since soil behaviour is governed by it.  

Changes in water level below ground (water table changes) result in changes in 

effective stresses below the water table. Changes in water level above ground (e.g. in 

lakes, rivers, etc.) do not cause changes in effective stresses in the ground below.  

The coefficient of earth pressure at rest can be defined as that state of stress 

equilibrium where there are no strains in the lateral direction. If the effective vertical 

stress is unaffected by changes in the water level above ground level then the same 

must be true of the effective lateral stress, otherwise the condition of no lateral strain 

will be violated. Therefore whatever water pressure u is being deducted from the 

total vertical stress to give effective vertical stress is the same u that must be 

deducted from the total lateral stress.  

http://environment.uwe.ac.uk/geocal/SoilMech 

 
Fig 3.15 Initial loading and final unloading creep compared 

http://environment.uwe.ac.uk/geocal/SoilMech


from both the total insitu vertical stress vo and the total insitu horizontal stress ho to give 
ko: 
 𝑘0 = (𝜎ℎ𝑜 − 𝑢0) (𝜎𝑣𝑜 − 𝑢0)⁄   [3.6] 
When applying this to a submerged soil, care has to be taken to establish exactly what it is 
measured with the pressuremeter to get the appropriate parameters for calculating ko.  

Figure 3.16 is the arrangement for a submerged soil, where ua is the water pressure above 
sea bed calculated from the water depth za and ub is the water pressure below sea bed 
calculated from the soil depth zb. 
 
The total insitu vertical stress is the weight of everything above the element of soil in fig 
3.16: 

 𝜎𝑣𝑜 = 𝛾𝑠𝑧𝑏 + 𝑢𝑎 [3.7] 
where s is saturated unit weight of the soil 

ua is the water stress above the sea bed = zaw  

w is the unit weight of water 

 

 

The effective insitu vertical stress is vo less the contribution of the water: 

 𝜎𝑣0
′ = 𝜎𝑣𝑜 − 𝑢𝑎 − 𝑢𝑏 [3.8] 

where  ub is the water stress below the sea bed = zbw  

   

Because ua appears in [3.7] and [3.8] it cancels out in the calculation of effective vertical 
stress: 
 𝜎𝑣0

′ = 𝛾𝑠𝑧𝑏 − 𝑢𝑏  [3.9] 
Or  𝜎𝑣0

′ = 𝑧𝑏(𝛾𝑠 − 𝛾𝑤)  [3.10] 

Equations [3.9] and [3.10] make no mention of the water above the sea bed and satisfy the 
condition that the effective vertical stress is unaffected by changes in the water level above 
bed level. However, unlike [3.8], they cannot be re-arranged to find the total vertical stress 
when the material is submerged. A similar argument applies to the total insitu horizontal 

stress, ho The head of water above the soil element is a component of ho, and this 
combination is the stress determined from the pressuremeter test, referred to as cavity 

Figure 3.16   Effective stresses, submerged case 

 



reference pressure po. If the process of forming the cavity has not altered the insitu stress 
state then the following applies: 

 𝑝0 = 𝜎ℎ𝑜
′ + 𝑢𝑎 + 𝑢𝑏 [3.11] 

   
The effective insitu horizontal stress is the cavity reference pressure less the contribution of 
the water pressure: 

 𝜎ℎ𝑜
′ = 𝑝0 − 𝑢𝑎 − 𝑢𝑏  [3.12] 

   
Because the measured parameter is po it turns out to be necessary to know ua, the pressure 
of the water above the ground surface. ko is calculated by combining  [3.8] and [3.12] giving 
 

 
𝑘𝑜 =

𝑝𝑜 − 𝑢𝑎 − 𝑢𝑏

𝜎𝑣𝑜 − 𝑢𝑎 − 𝑢𝑏
=

𝜎ℎ𝑜
′

𝜎𝑣𝑜
′

 
 [3.13] 

Note also that when calculating the water contribution (ua and ub) the density will not 
necessarily be that of fresh water. Salt or briny water will have a higher unit weight. 
 


